Concentration ( enzyme to substrate ), temperature and pH.
you can say enzyme reaction depends on ph, temp
Enzymes follow a specific procedure called "lock and key" model, where they bind to substrates to catalyze reactions. Factors that affect enzyme activity include temperature, pH, substrate concentration, and the presence of inhibitors or activators. These factors can alter the enzyme's structure, affecting its ability to bind to substrates and catalyze reactions effectively.
Factors that affect the rate of enzyme activity include temperature, pH, substrate concentration, and enzyme concentration. Temperature and pH can alter the shape of the enzyme, affecting its ability to bind to the substrate. Changes in substrate and enzyme concentration can affect the frequency of enzyme-substrate collisions, which impacts the rate of reaction.
The enzyme has an optimal point of pH at which the enzyme works best. For example a catalase enzyme works best in a pH of 7. When the pH changes it denatures the enzyme causing it to not be able to react with the substrate.
A low temperature can slow down enzyme activity and high temperatures can denature an enzyme making it unusable. pH levels also affect enzyme activity. Every cell has an ideal temperature and pH
Factors affecting enzyme activity1: Enzyme concentrationIf the quantity of enzyme is doubled, the enzymatic activity will also be doubled because more enzymes are now available to work. After a certain level of enzyme concentration, there will be no more increase in the enzymatic activity because all the substrate molecules are combined with an enzyme and the rate of reaction will stabilize.2: Substrate concentrationBy increasing substrate concentration, enzymatic activity increases. Increasing the substrate further without increasing the enzyme concentration will not affect the enzymatic activity because all the enzymes are occupied by a substrate molecule.3: pH valueSome enzymes require acidic surroundings, most require a more neutral condition for their activity. Change in the pH can change the enzyme's structure and enzyme become useless.4: TemperatureAn increase in temperature of 10 degree celsius doubles the enzymatic activity. Each enzyme has its own optimum temperature at which its enzymatic activity is maximum. Very high temperatures break the bonds that maintain shape of enzyme. If the enzyme denatures, the substrate can not fit in to the active sites and enzyme become useless.
Ph level accelerates enzymes and temperature slows the process down
Factors such as temperature, pH levels, substrate concentration, and the presence of inhibitors or activators can affect the activity of an enzyme. Changes in these environmental conditions can alter the enzyme's structure, ultimately impacting its ability to catalyze reactions efficiently.
Concentration of the enzyme or it's substrate and the temperature.
The concentration of hydrogen ions in solution affects the enzyme activity. Each enzyme has maximal efficiency under an optimum pH. Since pH is one of the factors for the denaturation of proteins, if an enzyme is submitted to a pH level under which it is denatured there will be no enzymatic activity.
Some environmental enzyme factors include temperature, pH, substrate concentration, and presence of inhibitors or activators. These factors can affect enzyme activity by altering the enzyme's structure or its ability to bind to the substrate. Temperature and pH are particularly critical as they can denature enzymes if not within the optimal range.
There are a number of factors that can influence how efficiently a certain enzyme can catalyse a reaction: the amount of substrate present, whether there are chemicals present that inhibit enzymes by either binding to their active site or cofactor site, the amount of enzymes present...