Asked in Animal Life
Animal Life

What are forams?


User Avatar
Wiki User

The Foraminifera, ("Hole Bearers") or forams for short, are a large group of amoeboid protists with reticulating pseudopods, fine strands of cytoplasm that branch and merge to form a dynamic net. They typically produce a shell, or test, which can have either one or multiple chambers, some becoming quite elaborate in structure. About 275,000 species are recognized, both living and fossil. They are usually less than 1 mm in size, but some are much larger, and the largest recorded specimen reached 19 cm. Although as yet unsupported by morphological correlates, molecular data strongly suggest that Foraminifera are closely related to the Cercozoa and Radiolaria, both of which also include amoeboids with complex shells; these three groups make up the Rhizaria. However, the exact relationships of the forams to the other groups and to one another are still not entirely clear. Modern forams are primarily marine, although they can survive in brackish conditions. A few species survive in fresh water and one even lives in damp rainforest soil. They are very common in the meiobenthos, and about 40 morphospecies are planktonic. This count may however represent only a fraction of actual diversity, since many genetically discrepant species may be morphologically indistinguishable. The cell is divided into granular endoplasm and transparent ectoplasm. The pseudopodial net may emerge through a single opening or many perforations in the test, and characteristically has small granules streaming in both directions. The pseudopods are used for locomotion, anchoring, and in capturing food, which consists of small organisms such as diatoms or bacteria. A number of forms have unicellular algae as endosymbionts, from diverse lineages such as the green algae, red algae, golden algae, diatoms, and dinoflagellates. Some forams are kleptoplastic, retaining chloroplasts from ingested algae to conduct photosynthesis. The foraminiferan life-cycle involves an alternation between haploid and diploid generations, although they are mostly similar in form. The haploid or gamont initially has a single nucleus, and divides to produce numerous gametes, which typically have two flagella. The diploid or schizont is multinucleate, and after meiosis fragments to produce new gamonts. Multiple rounds of asexual reproduction between sexual generations is not uncommon in benthic forms. Because of their diversity, abundance, and complex morphology, fossil foraminiferal assemblages are useful for biostratigraphy, and can accurately give relative dates to rocks. The oil industry relies heavily on microfossils such as forams to find potential oil deposits. Calcareous fossil foraminifera are formed from elements found in the ancient seas they lived in. Thus they are very useful in paleoclimatology and paleoceanography. They can be used to reconstruct past climate by examining the stable isotope ratios of oxygen, and the history of the carbon cycle and oceanic productivity by examining the stable isotope ratios of carbon. Geographic patterns seen in the fossil records of planktonic forams are also used to reconstruct ancient ocean currents. Because certain types of foraminifera are found only in certain environments, they can be used to figure out the kind of environment under which ancient marine sediments were deposited. For the same reasons they make useful biostratigraphic markers, living foraminiferal assemblages have been used as bioindicators in coastal environments, including indicators of coral reef health. Because calcium carbonate is susceptible to dissolution in acidic conditions, foraminifera may be particularly affected by changing climate and ocean acidification.