Sources without internal resistances.
A current source varies the output voltage to maintain the desired current. A voltage source has a constant output regardless of the current draw (up to the capacity of the supply, of course).
If two ideal sources of unequal voltage are connected in parallel the higher voltage will provide a majority of the current (a two percent difference in voltage would provide an additional 5% of the current) and (in the case of batteries) the larger would provide charging current, quickly draining it.
In low voltage and electronics Leakage Current is any current that flows when the ideal current
An ideal voltage source is a theoretical concept used in electrical engineering and circuit analysis. It is a voltage source that maintains a constant voltage output regardless of the current flowing through it or the load connected to it. In other words, an ideal voltage source has zero internal resistance and can supply infinite current at a constant voltage. In contrast, a practical voltage source is a real-world device that has internal resistance and cannot maintain a constant voltage output when a load is connected to it. The voltage output of a practical voltage source will decrease as the current flowing through it increases, due to the internal resistance of the source. As a result, the voltage across the load will be less than the voltage output of the source, and the difference is known as the voltage drop. In practical applications, it is important to take into account the limitations of practical voltage sources and design circuits that can operate within these limitations. An understanding of the behavior of both ideal and practical voltage sources is essential for designing efficient and effective electrical circuits. You also read more at electronicsinfos. com
Independent SourcesIndependent sources produce current/voltage at a particular rate that is dependent only on time. These sources may output a constant current/voltage, or they may output current/voltage that varies with time.Dependent SourcesDependent sources are current or voltage sources whose output value is based on time or another value from the circuit. A dependent source may be based on the voltage over a resistor for example, or even the current flowing through a given wire. The following sources are possible:Current-controlled current sourceCurrent-controlled voltage sourceVoltage-controlled current sourceVoltage-controlled voltage sourceDependent sources are useful for modelling transistors or vacuum tubes.
If the source you're talking about is an ideal voltage source, then the amount of current depends on the size of the source and the total resistance of the circuit connected to it. Ohm's Law tells us that the current, I, is directly proportional to the voltage, V, and inversely proportional to the resistance, R: I = V/R So, increasing the voltage increases the current, whereas decreasing the resistance does the same. There are practical limitations to that, however. In the real world, reducing the resistance to zero does not produce infinite current, as suggested by the formula. Infinite current is produced only by "ideal" voltage sources, which don't exist.
voltage source and current source
Current source means current generator for a circuit. An ideal current source gives all current to the circuit, but practically a current source does n't give all current to the circuit, instead, a source resistor is connected in parallel to the current source to indicate the current drop.
In a pure (ideal) capacitive circuit, current leads voltage by 90 degrees.
An ideal diode would match the purpose of a diode without any of the drawbacks. The purpose of a diode is to control current flow - The diode "turns on" for current flowing in one direction, and "turns off" if current wants to flow in the other direction. Ideally, there would be no voltage drop across this diode when allowing current flow, thus no power loss. When the diode is "turned off" by a negative voltage, idealy there would be no current flow (no matter how large the negative voltage).
In an ideal inductor, no, there is no voltage induced across an inductor unless the current in the inductor is changing. However, since there are no ideal inductors nor power supplies, eventually an inductor will draw a constant current, i.e. the limit of the power supply; and, since no inductor has zero ohms at equilibrium, that current will translate to voltage.
An independent source is a source that produce constant currents and voltage. Dependent sources are voltage sources that depend on a voltage somewhere else in the network.