answersLogoWhite

0


Best Answer

I have searched for a website on career choices available at Chemical Engineers and have found this one. I think it will answer your question. www.aiche.org/CareerResources

User Avatar

Wiki User

9y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

8y ago

Industrial Chemistry

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What career choices are available at Chemical Engineers?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Chemical Engineering

Is chemical engineering a declining career field?

Chemical engineering is a slightly declining career field. IT jobs and engineering that focuses on technology has overtaken this field.


How do you become a nuclear engineer?

You have to know stuff. You have to be smart and know things. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you.


Three Pharmacy Technician Career Paths?

Starting a career as a pharmacy technician can be accomplished in several ways, depending on the requirements of your state. Many technician programs are available, but you only need to meet the qualifications of your state to get started. The most common routes to starting a career as a pharmacy technician are internships, college programs or national certification.Some states do not require registration or licensure, while others require a specific training program or board-approved certification. A few states require an associate's degree. Basic state information is listed here: http://www.nhanow.com/pharmacy-technician/requirements.aspx. To ensure you have current information, verify the requirements with your state licensing board, usually found online through the occupational licensing department or the state pharmacy board.InternshipsIf training is required, some states allow you to substitute an internship for formal coursework. Many people choose this option and prefer to learn on-the-job with the support of their co-workers. Many companies will also prepare you for certification, saving you both time and money.Pharmacy Technician SchoolsIf your state requires training through an accredited program, be sure you enroll in a school listed on your state pharmacy board list of approved schools. Community colleges and technical schools typically have inexpensive training programs. Beware of online schools since many of them are not accredited and will not meet the requirements of your state.Pharmacy technician programs will provide you with both pharmacy theory and a practical lab or externship. For many people, pharmacy math is the most demanding material, but you can take a math refresher course before beginning if your math skills are rusty.National CertificationIf your state has no required training hours, you may not need to pursue any specific education, however, certified pharmacy technicians are usually in high demand, and it would be worth your time to pursue national certification at some point in your career.States that require national certification usually accept one of two programs: Pharmacy Technician Certification Board (PTCB) or National Healthcare Association (NHA). When you pass either test, you will receive the title Certified Pharmacy Technician (CPhT).Several options are available to help you pass the test. You can study on your own, take a course or complete an internship. If you choose to study on your own, both certification programs offer books and study materials. If you don't need an accredited course, online pharmacy technician courses can be an excellent way to prepare for the certification exam. Walgreens is one national chain that frequently hires technician interns and then provides study help to pass the certification exam.


What is the factors to be considered in choosing either chemical or mechanical engineering?

Dr. Barry J. Farbrother, Dean, Tagliatela College of Engineering, University of New Haven, CT. Congratulations on your decision to continue your studies beyond high school level. College will be an exciting and challenging experience. It is a place where you will meet new friends - some of whom will be fellow students and some of them will be professors. I hope that you decide to become part of the University of New Haven community. I can assure you that you will find the faculty at this university to be among the most dedicated, hardworking and amiable people in higher education today. Unlike their counterparts at any large university, as a student you will be able to meet with them either personally or in small groups. I am sure, if you do chose to attend the University of New Haven that you will come to regard them as your friends and find that above all else, they want you to succeed. You may have already decided upon a college. Others will have narrowed the choice to maybe two or three possibilities. And a few will have not the slightest idea!!! Because this is a very important decision, there are people here to help you to make that choice. I hope that I am correct in believing that you have already decided to attend college somewhere, and to obtain that all-important Bachelor's Degree. It is probably the most important decision affecting your career that you will have to make. It determines that you are going to become a "professional" person - one who possesses knowledge, skills and special training. It demonstrates your commitment to becoming a skilled contributor to society. But what are the factors that need to be considered when choosing a college? I have worked in several countries, at both large universities and small institutions, and I would like to share with you some of my thoughts and experiences. The quality of the education you are going to receive is determined by several factors - faculty to student ratio, laboratory facilities, faculty qualifications, computer facilities, campus environment, management philosophy, accreditation status, etc. At the University of New Haven undergraduate education is at the core of our programming. We also offer graduate programs in certain fields but only at the Master's level. The graduate programs provide opportunities for students to study beyond the bachelor's level and for professors to maintain their professional expertise. We want to let you know that we are very different from other institutions of higher learning, - and we certainly are not a major research university. The focus of our educational activity is the Bachelor's Degree. I strongly encourage you to visit any school you are considering and hope you will AN OPEN LETTER TO PROSPECTIVE FRESHMEN 2 take a good look at us by visiting our campus in West Haven. After all, you are going to be spending four years obtaining your bachelor's degree, and hopefully you will choose an environment in which you are going to be happy. As you embark upon the journey to find the right school for you, you need to build a frame of reference that will enable you to make an informed decision. Make sure that you do not make the mistake of being dazzled by facilities and equipment you will see on some campuses - to which you (as an undergraduate student) will never have access. Ask questions about class size, who teaches class, and which laboratories and equipment you will be able to use. Take a look at the educational facilities - the computer center and the library, and the campus itself. Ask yourself if it is the sort of environment in which you could work and be productive. Be curious! Classes are UNH are kept to a size that supports professor-student interaction, - no larger than 30 students. The class will be taught by an experienced professor, not a graduate student. All of the Tagliatela College's engineering professors at UNH have earned the Ph.D. (doctoral) degree. Your professor will be available to meet with you either in a small group setting outside of the classroom (or laboratory), or one-on-one if necessary. Our professors run laboratory classes. Some of our graduate students do assist professors in the laboratory, providing additional access to help when you require it. Because college is not all work, take a look at all of the campus. It is very important that you understand that earning an engineering, computer science,information technology or chemistry degree is not the only thing you will be doing while you are here. There is a broader aspect of the four-year university experience. A university education is a preparation for life! One of the outstanding features of UNH is that it is a comprehensive university comprising The College of Arts & Sciences, The College of Business, The Henry C. Lee College of Criminal Justice and Forensic Sciences, and The Tagliatela College of Engineering. This variety brings diversity to the campus and so you will have the opportunity to meet other undergraduates who are studying communications arts, performance, mathematics, the sciences, criminal justice and many other subjects. You will have the opportunity to explore your nontechnical side! Perhaps you have an aptitude for radio, or perhaps you play a musical instrument or are an aspiring actor or actress. If you are service minded there will be ample opportunity for you to participate in food drives or service learning. Look at the recreational facilities. Ask to speak with the Athletics staff about the facilities and activities that are available. Although we do not offer sports scholarships, we do recognize the benefits of extra-curricular activities, and we have some anecdotal data revealing that students who participate in them do better (on average) than those who don't. A major new project is the new recreation center that is planned for completion in December 2007 . At the University of New Haven the first responsibility of the faculty is education, not research. The university is not dependent upon funding from research contracts in order to maintain faculty positions. Faculty advancement is determined by several factors, the professor's work in the classroom and laboratory being the most important. All full-time faculty members in the Tagliatela College of Engineering at the University of New Haven have doctoral degrees, and many have professional qualifications, and/or industrial experience. Several are consultants to industry, and this work is usually undertaken outside of school hours or during the summer. It is important to us that the faculty retain and enhance it's professional skills as we enter an era where we are attempting to "parallel the workplace" in our degree programs. If you wish to learn more about our degree programs then I suggest that you read the UNH Catalog or look at our web page at http://www.newhaven.edu On the engineering web site you will find a message from the dean where you will be able to access some links that will hopefully help you with your decision making process. We recognize that some students have considerable difficulty in 3 choosing a career and so we do what we can to accommodate the decision making process even through the end of the freshman year and beyond. The reason we are able to accommodate this indecision is because our degree programs have a unique characteristic. The freshmen year is common to most of our engineering bachelor's degrees. This means that when you are admitted to the Tagliatela College of Engineering, you will have at least another year in which to decide which particular engineering discipline you wish to study. This is because we have developed a unique curriculum known as the Multidisciplinary Engineering Foundation Spiral Curriculum. The National Science Foundation decided that the concept of this new curriculum was so innovative that they chose to support its development with a grant of $100,000! We taught the freshman curriculum in pilot form and then implemented it in 2004. A major feature of the freshman curriculum is that it provides an opportunity to experience engineering in your very first year at UNH. Yes - you will design, build and test an engineering artifact before you are a sophomore! In 2005, we taught the sophomore courses for the first time, and in May 2008, the first "spiral curriculum" students will graduate. But let me return to the topic of careers in engineering, computer science and chemistry. The workplace has changed! What I mean by this is that two developments have occurred, which have caused major changes in the way the professions of engineering, computer science and chemistry are practiced. The first development relates to technology - the advent of the computer and specialized software tools that have increased productivity. The second is the shear complexity of engineering and science projects. Engineers and scientists now have to work in teams in order to bring new products to market, or to solve the problems facing mankind and his environment. As technology forges ahead at an ever-increasing pace, these professionals have to be career-long learners, adaptable, capable of assimilating new techniques and able to communicate new ideas and concepts to others, and to lay people. I am going to overview some of the opportunities open to holders of engineering and/or applied science degrees. Chemistry: Chemists find employment throughout industry - not solely in the pharmaceutical industry, which is probably the first one that comes to mind. Computer software now helps chemists design new compounds that are necessary for products found in virtually every other industry from packaging to construction. Chemical Engineering: Chemical Engineers take the discoveries of the chemist and design processes that make it possible to efficiently manufacture these products. They are also responsible for operating and managing the complex plants that produce these products from raw materials. Civil Engineering: Civil Engineers are responsible for the elements of our surroundings - buildings, highways, and bridges. However, increasingly a new branch of the discipline involves them in wetlands, and other aspects of our environment, namely the discipline of environmental engineering. Computer Scientists: The practice of computer science relates predominantly to the software components of computing systems. Software design is becoming increasingly complex and the number of languages is increasing. Computer scientists also find employment managing computer systems and networks. Computer Engineering: Computers are ubiquitous! Basically, where there are computers, there also will you find computer engineers. They have expertise in both hardware and software components and also find excellent opportunities in the design of systems utilizing computing elements and in the administration of computer systems and networks. Electrical Engineering: Electrical Engineering is a really broad subject area that spans everything from transistors and integrated circuits to huge power generators and power distribution systems. It also covers control systems and communications - a booming industry. 4 Mechanical Engineering: The discipline of Mechanical Engineering is based upon energy conversion. Machines take energy in one form and covert it to our use - a lathe, and an automatic transmission are two examples. But mechanical engineers also design structures - aircraft, automobiles, railroads and a huge variety of consumer products. Multidisciplinary Engineering Systems: This Division's mission is to provide a multidisciplinary engineering foundation for a variety of programs, to administer engineering programs that cross traditional engineering boundaries, and to promote scholarship and excellence in engineering education. The program includes the First Year Engineering Program, and the Multidisciplinary Engineering Foundation Spiral Curriculum, which is a four-semester sequence of engineering courses (EAS) matched closely with the development of students' mathematical sophistication and analytical capabilities and integrated with coursework in the sciences. System Engineering: System engineering, as a formal engineering discipline, is one of the most flexible and broad-based disciplines in engineering and is poised to provide balanced solutions to diverse and complex problems primarily related to product development and commercialization processes. Our program combines strong theoretical foundations in science, mathematics, and the UNH spiral engineering science curriculum with system engineering-related topics, integrated with computer applications. This has been a very brief introduction to these professions. I hope that I have given you one or two things to think about - but more importantly - that you will follow-up in your own time. You will find more information in the packet we have provided you and I have also given phone numbers and email addresses at the end of this letter so that you can contact me. Please use the resources at your disposal to find out more about the profession of engineering. It is your responsibility to take ownership of this process! I would like to use the remaining space to whet your appetite with regard to the degree programs that are offered at UNH. You need to know that our bachelor's degree programs in Chemical Engineering, Civil Engineering, Computer Engineering, Computer Science, Electrical Engineering and Mechanical Engineering are accredited by the Engineering Accreditation Commission (EAC) of the Accreditation Board for Engineering and Technology (ABET) - that is, they have the stamp of approval from the national accrediting body. Presently, we are not accepting applications for enrollment in the program in industrial engineering as the program is being phased out to make way for new programs in the future. Each of our degree programs has been carefully designed to produce graduates who are able to immediately contribute to the profession. In fact our faculty is continually looking for ways to improve our degree offerings. This is all part of a continuous improvement methodology to provide the very best experience for students. You may wonder why we continue to change our degree programs. After all, if the "old" programs were accredited, why should it be necessary to alter them? Well, the truthful answer is that, from the viewpoint of accreditation status, it was not necessary! However, we have made significant changes because of the changes that have occurred in the workplace, and in order that our graduates will be prepared for the challenges of the twenty-first century. The changes in the workplace have been of such a magnitude that you may hear them referred to as a paradigm shift. History is littered with such events - events that have a dramatic effect on our lives. Examples of three such events are the invention of the steam engine, which facilitated the industrial revolution, the transistor that virtually ended the thermionic tube era, and later the microprocessor, which changed the nature of digital systems design and led to the era of distributed computing. 5 Because the way the engineers and computer scientists work has changed, so must the way in which these professionals are trained. Indeed there has been a call from the National Academy of Engineering and from ABET (the Accreditation Board for Engineering and Technology) for a new era in engineering education. This is why several of our professors decided to design the Multidisciplinary Engineering Foundation Spiral Curriculum. Our degree programs, we believe, are designed to produce a new breed of professional - the Engineer or Scientist of the 21st. Century - Renaissance professionals. All of our computers are networked to permit access to university computing resources, and provide access to the Internet. Buckman Hall, home of the Tagliatela College of Engineering, is a wireless facility. Our programs still produce the technically competent graduates sought by industry, but they also utilize technology and enable you to develop what we refer to as "professional skills". We will also broaden your experience by making you aware of your social, environmental and ethical responsibilities. We believe our new degree programs will provide you with an exceptional preparation for life in the 21st century. Our degree programs require you to have a thorough understanding of mathematics and science, which you gain in your freshman year. As you enhance your mathematical skills you will be increasing your knowledge in the areas of engineering and science - in a coordinated manner, and learning how to work effectively as a member of a team. To solve complex problems you must understand team dynamics and what it takes to be an effective team member. You will learn about the engineering method and project management so that you are better able to manage your time. In the Sophomore year, you will begin to "learn how the world works" by studying a core of Engineering Science topics including electrical, fluid, mechanical and thermal systems and relate them to more advanced mathematical topics including statistics and differential equations. We also begin to expose you to some of the wider issues you will need to understand as a practicing engineer - Total Quality Management (TQM), Professional Ethics, Economics, Project Management and Team Dynamics. Our computer science program provides a solid foundation in mathematics and an exposure to several high- and low-level programming languages. It also provides good breadth in computer topics including compilers, computer architecture, data structures, digital electronics, networking, operating systems, and software engineering. Students broaden their education through electives in fine arts, life skills, philosophy, science, and social science and have additional flexibility to tailor their program through free electives. All programs require students to develop good written and oral presentation skills. We require you to demonstrate these professional skills throughout the curriculum thereby allowing you to hone them here on campus so that you enter the workforce with a head start over your peers. When you enter the junior year you have all the tools you need to begin to specialize in your chosen major. The junior year is a "breadth" year enabling you to gain a good understanding of all the essential areas of your chosen major. Unlike the truly great artists (masters), who were born and not trained; now it is possible to learn the art of design as a process. This will provide you with the tools to enable you to embark upon your senior year. This allows you to tailor course work, so that you may specialize in a particular area, or retain breadth if preferred. An essential component of engineering work is the ability to perform design. Engineers are people who work to improve the environment in which we all live. We are working to increase the number of opportunities for student engineers to work on realworld projects and to undertake internship placements with some of the top companies located within the region and elsewhere. We are particularly keen to place students with entrepreneurial (start-up) organizations in addition to the large multi-national corporations, which have traditionally been the training ground for newly graduated engineers and scientists. We are finding that the business and corporate community in the New Haven region is keen to partner with the University of New Haven by providing internship opportunities for our students. They are also partnering with us in new ways by providing corporate scholarships for our students. Please stay tuned to the media for more news in this regard! I hope that I have been able to help you in your decision making process with regard to your career and choice of college. I encourage you to give it careful and considered thought because these are very important choices. Please accept my best wishes for your future. I hope that you will choose University of New Haven as your "first choice" and decide to study Chemistry, Chemical Engineering, Civil Engineering, Computer Engineering, Computer Science, Electrical Engineering, Information Technology, Mechanical Engineering, and System Engineering. But, even if you do not, I wish you every success in your chosen profession. For helpful links about career options check out: http://www.newhaven.edu/engineering Please contact me if you have questions about engineering careers, or our programs. I can be reached by telephone at: 203 932-7167 (Office Voice) 203 932-7394 (Office Fax) or by E-mail at: bfarbrother@newhaven.edu HOPE THIS HELPS!!!!!!!!!!!!!!!!!!!!!


Interview Tips For Computational Chemistry Jobs?

Interviewing for a job can be stressful, but there are some things you can do to make sure that you impress potential employers and get the computational chemistry job you want. When you go to computation chemistry interviews, make sure you arrive a few minutes early. Greet your interviewer with a confidence smile and firm handshake. You should also ask questions during the interview that indicate you have done some research into the company's policies and practices. Even if you are interviewing in a laboratory setting, you should wear a suit. A suit says to potential employers that you take your computational chemistry career seriously. Follow these tips, and you will do well at job interviews.

Related questions

What is the starting salary of chemical engineers in India?

In India A chemical engineer can start his career with near 2.4 LPA.


How many website-developer are looking for software-engineers?

There are thousands of website developers looking for software engineers. You can find these jobs available from websites such as Indeed, Monster and Career Builder.


Give a type of CAREER that requires use of chemistry?

Doctors, Vets, Dentists, Chemical Engineers, Chemists, Pharmacologists, drug designers etc


What are some of the best college majors for a career?

To decide which college major is best for a career is difficult because there are many career choices available. For example, computer science, nursing and business are all very popular.


If I get a PhD in Chemical Engineering, what type of jobs can I get?

The most common career path after receiving your PhD in Chemical Engineering is become an independent researchers. Individuals who are Chemical Engineers often work for the government or other private sectors who utilize their training.


How accessibility influences career choices?

how can accessibility influence your career


Chemical Engineer Career Information?

Chemical engineers are involved in the application of chemicals to practical processes. Chemical engineers are knowledgeable about the behavior and application of chemicals- and are often highly educated in the field of chemistry. Chemical engineers often work in the industrial field, as the work that they do is often commissioned by, and utilized for the chemical industry. Chemical engineers could be involved in the chemical processes to produce plastics, gasoline, and other sorts of materials that are utilized by all sorts of people and companies. Chemical engineers must be highly knowledgeable about both chemistry and engineering principles, as they utilize both fields in their careers. This requires education at properly accredited post-secondary educational institutions- typically colleges and universities. Chemical engineers, on the whole have bachelor degrees, and typically hold masters and doctoral degree’s as well. This extensive education stems from the combination of the fields of chemistry and engineering. Due to the danger of chemicals, chemical engineers are required to go through stringent procedures to ensure the safety of both the engineer and client. Chemical engineers must go through state regulated licensing procedures- which can vary from state to state. There is typically written and practical examinations, as chemical engineers must be knowledgeable on safety procedures and protocols within their field. Individual employers may have other requirements- for example, federal agencies may require that a chemical engineer have a certain security clearance in order to work for the federal government. The extensive education and licensing pays off though, as starting salaries can be between 55,000 and 70,000 dollars for graduating students. Chemical engineers can make as much as 105,000 dollars a year on average, with the potential to make more depending upon the employer. Potential employers of chemical engineers can include chemical companies, city, state, and federal agencies and organizations, as well as private firms specifically devoted to the field of chemical engineering. Chemical engineers may find themselves working as project overseers, managers, researchers, as well as the possibility of teaching in post-secondary educational institutions like colleges and universities. Many employers expect a high degree of professionalism from employed chemical engineers.


How to Get Chemical Engineering Jobs?

For someone who is interested in science and chemistry, pursuing a career as a chemical engineer could be a good idea. Chemical engineers are individuals who combine science and engineering to solve many of the world�s problems. The first step in becoming a chemical engineer is to get a proper education. Chemical engineers have to pass through a rigorous curriculum of engineering, biology, chemistry, and other classes in order to obtain a bachelor�s degree. Many engineers also choose to pursue a masters or even doctorate degree, which will open up plenty of additional opportunities. Once school is completed many chemical engineers pursue jobs working for either the government, related agencies, or private companies. The jobs that they do range widely based on the organization that they work for.


Mention any kind of career you have leant?

Doctors, Engineers, and Accountants are all different types of career fields.


What engineers starts with the letter g?

Geological Engineer is an engineering career.


How many career choices are there?

How many Carrier or there and what tapy there is


What are some career choices?

a pink fluffy astruonot