airway, breathing, pulse
Plan
Belle Boyd, a Confederate spy during the American Civil War, married twice. Her first marriage was to John Hammond in 1864, but it ended in divorce after just a few months. Subsequently, she married a British soldier, Samuel S. D. D. D. A. P. B. P. C. A. P. D. C. P. D. P. C. P. C. P. D. C. P. D. P. C. P. D. C. P. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P
p = r - c r - c = p r - c - r = p - r -(-c) = -(p) c = -p
BOB :)) laughing face B+C=P look at it side ways
It depends on what currency - and therefore the choice of coins. In the UK, for example, there is a 20 p coin but no 25 p whereas in the US there is no 20 c but there is a 25 c coin.
is means that the variable p gets the value from variable c assigned to it. So if c = 6 and the program executes p = c p will also be 6 but depending on the kind of variables p and c are it can also be c = "i am c" and than after p = c the value of p will be "i am c"
Remember two P's. Personality and Pocket and 1 C that is communication. You would get whatever you want.
Combination Formula ProofGENERIC:Let C(n,r) be the number of ways to generate unordered combinationsThe number of ordered combinations (i.e. r-permutations) is P(n,r)The number of ways to order a single one of those r-permutations P(r,r)The total number of unordered combinations is the total number of ordered combinations (i.e. r-permutations) divided by the number of ways to order each combinationThus, C(n,r) = P(n,r)/P(r,r) = [n!/(n-r)!]/r!/(r-r)!] = n!/r!(n(n-r)!SPECIFIC:Let C(52,5) be the number of ways to generate unordered poker handsThe number of ordered poker hands is P(52,5) = 311,875,200The number of ways to order a single poker hand is P(5,5) = 5! = 120The total number of unordered poker hands is the total number of ordered hands divided by the number of ways to order each handThus, C(52,5) = P(52,5)/P(5,5)
C-P-C was born in 1977.
you need p p p c i c c r c r = redstone(dust) c = cobblestone p=wooden planks
p=b+3a+c p-3a-c=b+3a-3a+c-c p-3a-c=b b=p-3a-c
The answer is negative four BECAUSE... 20/5 is POSITIVE four 20/-5 is a NEGATIVE four because a positive divided by a negative is a negative. Easy way to remember negs/pos: n * p = n p* n = n p * p = p n * n = p n / p = n p / n = n p / p = p n / n = p There are always two ways to get a positive, and two ways to get a negative. Very simple.