Temperature
The active site of the enzyme has a shape that matches the specific shape of the maltose molecule, allowing them to bind together. This binding is important for the catalytic function of the enzyme, which helps break down the maltose molecule into smaller components.
a large penis that will be inserted into your anus
The shape of the enzyme must match the shape of the substrate. ... Higher temperature generally causes more collisions among the molecules and therefore ... bonding within the protein molecule change and the molecule changes shape.Can cause the enzyme to change shape? If you mean What causes it to change shape, mainly it's heat.
The substrate is the molecule on which the enzyme acts. It binds to the active site of the enzyme, leading to catalysis of the chemical reaction. The shape and chemical properties of the substrate are important in determining which enzyme can act on it.
Denaturation
Hair like enzymes are made of protein. However for a protein to be an enzyme it must have a very specific tertiary structure (shape) and have an active site that has a complementary shape to part of its substrate molecule. ie the enzyme must fit with the thing that it breaks down The tertiary sructure of hair is not highly folded and does not have a complementary shape to a substrate molecule therefore it is not an enzyme
For an enzyme to work it must bind to a specific substrate molecule, using a part of the enzyme molecule called the active site. To do this, the enzyme's active site and the substrate must have matching (complementary) shapes. The shape of an enzyme molecule depends on the exact way in which the molecule folds up. When enzymes are heated the weak bonds which hold the molecules in their precise shape are broken, and the enzyme molecule "unwinds" into a random shape. It can no longer bind with its substrate so it no longer has any activity. This "unwinding" of a protein molecule is called denaturation.
The type of molecule that is an enzyme is a protein molecule.
When a regulatory molecule binds to an enzyme, it can cause a conformational change in the enzyme's active site, either activating or inhibiting its function. This change in shape can affect the enzyme's ability to bind substrate molecules and catalyze reactions. Regulatory molecules can help control enzyme activity in response to cellular signals or changes in the environment.
invalid question!
Allosteric inhibition occurs when a molecule binds to a site on the enzyme that is not the active site, causing a change in the enzyme's shape and reducing its activity. Non-competitive inhibition, on the other hand, involves a molecule binding to the enzyme at a site other than the active site, but still affecting the enzyme's activity without changing its shape.
Allosteric regulation involves a molecule binding to a site on the enzyme that is not the active site, causing a change in the enzyme's shape and activity. Competitive inhibition involves a molecule binding to the active site of the enzyme, blocking substrate binding and enzyme activity.