answersLogoWhite

0

What could 2 H on a B C stand for?

Updated: 8/17/2019
User Avatar

Wiki User

14y ago

Best Answer

2 humps on a Bactrian Camel.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What could 2 H on a B C stand for?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is c b stand for in football?

I think C B stand for Cornerback.


A B C on the tree?

A B C on the tree . A stand for A B stand for Bee C stand for see means " A bee see on the tree " .....


What is the answer to a x a x a plus b x b x b equals c x c x c?

well it could be anything, but I think you are thinking of Pythagoras' theorem. a(2) x b(2) = c(2) (2) = squared


What does 2 H on a B C stand for?

2 Humps on a Bactrian Camel (just one on a dromedary).


What does airwaybreathingcirculation stand for?

A,b,c


What is proof of Heron's Formula?

This is a proof that uses the cosine rule and Pythagoras' theorem. As on any triangle with c being the opposite side of θ and a and b are the other sides: c^2=a^2+b^2-2abcosθ We can rearrange this for θ: θ=arccos[(a^2+b^2-c^2)/(2ab)] On a right-angle triangle cosθ=a/h. We can therefore construct a right-angle triangle with θ being one of the angles, the adjacent side being a^2+b^2-c^2 and the hypotenuse being 2ab. As the formula for the area of a triangle is also absinθ/2, when a and b being two sides and θ the angle between them, the opposite side of θ on the right-angle triangle we have constructed is 4A, with A being the area of the original triangle, as it is 2absinθ. Therefore, according to Pythagoras' theorem: (2ab)^2=(a^2+b^2-c^2)^2+(4A)^2 4a^2*b^2=(a^2+b^2-c^2)^2+16A^2 16A^2=4a^2*b^2-(a^2+b^2-c^2)^2 This is where it will start to get messy: 16A^2=4a^2*b^2-(a^2+b^2-c^2)(a^2+b^2-c^2) =4a^2*b^2-(a^4+a^2*b^2-a^2*c^2+a^2*b^2+b^4-b^2*c^2- a^2*c^2-b^2*c^2+c^4) =4a^2*b^2-(a^4+2a^2*b^2-2a^2*c^2+b^4-2b^2*c^2+c^4) =-a^4+2a^2*b^2+2a^2*c^2-b^4+2b^2*c^2-c^4 (Eq.1) We will now see: (a+b+c)(-a+b+c)(a-b+c)(a+b-c) =(-a^2+ab+ac-ab+b^2+bc-ac+bc+c^2)(a^2+ab-ac-ab-b^2+bc+ac+bc-c^2) =(-a^2+b^2+2bc+c^2)(a^2-b^2+2bc-c^2) =-a^4+a^2*b^2-2a^2*bc+a^2*c^2+a^2*b^2-b^4+2b^3*c-b^2*c^2+2a^2*bc-2b^3*c+(2bc)^2-2bc^3+a^2*c^2-b^2*c^2+2bc^3-c^4 =-a^4+2a^2*b^2+2a^2*c^2-b^4+(2bc)^2-c^4-2b^2*c^2 =-a^4+2a^2*b^2+2a^2*c^2-b^4+2b^2*c^2-c^4 (Eq.2) And now that we know that Eq.1=Eq.2, we can make Eq.1=(a+b+c)(-a+b+c)(a-b+c)(a+b-c) Therefore: 16A^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c) A^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c)/16 =[(a+b+c)/2][(-a+b+c)/2][(a-b+c)/2][(a+b-c)/2] And so if we let s=(a+b+c)/2 A^2=s(s-a)(s-b)(s-c)


How do you find the length of third side when 2 sides and all three angles are known?

The Law of Sines: with triangle ABC, the angles are A, B, & C. The sides {a, b, & c} are opposite of the respective capital letter vertex.a/sin(A) = b/sin(B) = c/sin(C). You know the angles A, B, C; and two sides (say a & b).So side c = a*sin(C)/sin(A) = b*sin(C)/sin(B).You could also use the Law of Cosines: c^2 = a^2 + b^2 - 2*a*b*cos(C)


What is the hypotenuse of a right triangle with on side of 5 inches?

You must know the other side. It could be anything greater than zero yet less than 5 and still be a right triangle.a^2 +b^2=c^25^2 +b^2=c^225+b^2=c^225=c^2-b^2


What does B C stand for?

before christ


What did the pythagorean theorm do for math?

If you know two sides of a right angle triangle, you can figure out the third by using the following formula: A*A+B*B=C*C or A**2+B**2=C**2 or C*C-B*B=A*A or C**2-B**2=A**2 or C*C-A*A=B*B or C**2-A**2=B**2 A is the bottom side if the right angle is at the bottom left, B is The only vertical(strait up and down) line if A is correct, and C is the last line.


If A is less than B and B plus C equals 10 and none of them equal zero then which of the following must be true?

You haven't provided any choices for the "which of the following" part of your question. Such questions are best avoided here. However, assuming a, b and c are all natural numbers, all of the following are true for a<b AND b+c=10: a=1, b=2, c=8 a=1, b=3, c=7 a=1, b=4, c=6 a=1, b=5, c=5 a=1, b=6, c=4 a=1, b=7, c=3 a=1, b=8, c=2 a=1, b=9, c=1 a=2, b=3, c=7 a=2, b=4, c=6 a=2, b=5, c=5 a=2, b=6, c=4 a=2, b=7, c=3 a=2, b=8, c=2 a=2, b=9, c=1 a=3, b=4, c=6 a=3, b=5, c=5 a=3, b=6, c=4 a=3, b=7, c=3 a=3, b=8, c=2 a=3, b=9, c=1 a=4, b=5, c=5 a=4, b=6, c=4 a=4, b=7, c=3 a=4, b=8, c=2 a=4, b=9, c=1 a=5, b=6, c=4 a=5, b=7, c=3 a=5, b=8, c=2 a=5, b=9, c=1 a=6, b=7, c=3 a=6, b=8, c=2 a=6, b=9, c=1 a=7, b=8, c=2 a=7, b=9, c=1 a=8, b=9, c=1


Show that among all rectangles with area A the square has the minimum perimeter?

Suppose sqrt(A) = B ie the square with sides B has an area of A and its perimeter is 4*B. Now consider a rectangle with sides C and D whose area is A. So C*D = A = B*B so that D = B*B/C Perimeter of the rectangle = 2*(C+D) = 2*C + 2*D = 2*C +2*B*B/C Now consider (C-B)2 which, because it is a square, is always >= 0 ie C*C + B*B - 2*B*C >= 0 ie C*C + B*B >= 2*B*C Multiply both sides by 2/C (which is >0 so the inequality remains the same) 2*C + 2*B*B/C >= 4*B But, as shown above, the left hand side is perimeter of the rectangle, while the right hand side is the perimeter of the square.