answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What describes the physical behavior of an ideal gas?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

When does a real gas display the most ideal behavior?

This is a gas having a high concentration.


How can a real gas be made to approach being an ideal gas?

Real gases approach ideal behavior at high temperature and low pressure. In this Condition gases occupy a large volume and molecules are far apart so volume of gas molecules are negligible and intermolecular force of attraction(responsible for non ideal behavior) become low. So gases approach ideal behavior.


What can happen to an ideal gas and what can not happen to an ideal gas?

The ideal gas laws describe the relationship of temperature, pressure, and volume for an ideal gas; these three factors are all directly related to each other. Other than that, the behavior of a gas depends upon its chemical identity. They have different boiling points and freezing points, different density, different types of chemical reactions that they undergo, etc., depending upon which specific gas we are talking about.


What is meant by the term 'ideal gas'?

An ideal gas is a theoretical gas composed of a set of randomly-moving, non-interacting point particles. The ideal gas concept is useful because it obeys the ideal gas law. At normal conditions such as standard temperature and pressure, most real gases behave qualitatively like an ideal gas. Many gases such as air, nitrogen, oxygen, hydrogen, noble gases, and some heavier gases like carbon dioxide can be treated like ideal gases within reasonable tolerances.


Why does strong repulsion between molecules not represent an ideal gas behavior?

The ideal gas laws are based on a model in which the ideal gas is composed of molecules which neither attract nor repel each other. The pressure that the ideal gas exerts on its container is simply the result of the random thermal motion of the molecules and the continual collisions which result from that random thermal motion. If the molecules also repelled each other, then they would produce a gas with even higher pressure, and the pressure would also increase more rapidly, if the gas was compressed, than it does in the absence of such repulsion. The observed behavior of real gases is much closer to that of an ideal gas that does not include repulsion between molecules. No such repulsion has been observed.

Related questions

Ideal gas law behavior of real gases under?

the ideal gas law describes that the behavior of real gases under all conditions of temperature and pressure.


What is an imaginary gas that conforms perfectly to the kinetic molecular theory callled?

That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.


When does a real gas display the most ideal behavior?

This is a gas having a high concentration.


How can a real gas be made to approach being an ideal gas?

Real gases approach ideal behavior at high temperature and low pressure. In this Condition gases occupy a large volume and molecules are far apart so volume of gas molecules are negligible and intermolecular force of attraction(responsible for non ideal behavior) become low. So gases approach ideal behavior.


Is the ideal gas law a physical change?

The ideal gas is not a change, it is a theoretical concept.


Why real gases deaviat from ideal behaviou?

It is assumed that Ideal Gases have negligible intermolecular forces and that the molecules' actualphysical volume is negligible. Real Gases have the molecules closer together so that intermolecular forces and molecules' physical volumes are no longer negligible. High pressures and low temperatures tend to produce deviation from Ideal Gas Law and Ideal Gas behavior.


What happens to the gas when temperature drops from 100 degrees to -100 degrees?

You will recall from the Ideal Gas Laws that temperature, pressure, and volume are all connected in terms of the behavior of a gas (especially an ideal gas, but actual gas resembles ideal gas to a certain extent). So, if the gas is in a container of fixed volume, then reducing the temperature will correspondingly reduce the pressure.


What is characteristic of 1 mole of gas at STP?

1 mole of an ideal gas at STP occupies 22.4 liters. If STP is 'close' to the boiling point a real gas may deviate from ideal behavior and thus the volume will not be as predicted.


What is the characteristic of 1 mole of gas at stp?

1 mole of an ideal gas at STP occupies 22.4 liters. If STP is 'close' to the boiling point a real gas may deviate from ideal behavior and thus the volume will not be as predicted.


What best describes the molecules of an ideal gas?

no volume, no intermolecular force of attraction, perfectly elastic collisions


What are examples of ideal gases?

An ideal gas is a gas that follows all the gas laws perfectly. An ideal gas is only a theoretical concept though. In order to have an ideal gas, the gas molecule must have no mass and absolutely no interaction with any other molecule. Several gases come close to this ideal (such as Helium), but none of them can fully achieve it.


What can happen to an ideal gas and what can not happen to an ideal gas?

The ideal gas laws describe the relationship of temperature, pressure, and volume for an ideal gas; these three factors are all directly related to each other. Other than that, the behavior of a gas depends upon its chemical identity. They have different boiling points and freezing points, different density, different types of chemical reactions that they undergo, etc., depending upon which specific gas we are talking about.