It's complimentary pair. C--G and T--A
The nucleotide sequence in DNA is determined by the sequence of the nitrogenous bases (adenine, thymine, cytosine, and guanine) along the DNA strand. These bases pair up in specific ways: adenine with thymine and cytosine with guanine. The order in which these bases are arranged along the DNA molecule determines the genetic information encoded within the DNA.
The order of the Amino Acids in the protein chain.
The complementary DNA strand is formed by pairing adenine (A) with thymine (T) and cytosine (C) with guanine (G). Therefore, if one strand has the sequence gta-gca, the complementary strand would have the sequence cat-cgt.
The sequence of nitrogenous bases in DNA is important for genetic information and protein synthesis because it determines the specific instructions for making proteins. Each sequence of bases codes for a specific amino acid, which are the building blocks of proteins. The order of these bases in DNA determines the order of amino acids in a protein, ultimately influencing the structure and function of the protein.
strand of DNA
The sequence of nitrogenous bases on one strand of a DNA molecule, such as GGCAGTTCATGC, dictates the genetic information encoded within that DNA. Each base pairs specifically with its complementary base on the opposite strand—guanine (G) pairs with cytosine (C), and adenine (A) pairs with thymine (T). This sequence ultimately influences the synthesis of proteins through the processes of transcription and translation, playing a crucial role in the expression of genes.
the sequence of bases in DNA
When a new DNA is formed , two strands of old DNA open and act as a template for synthesis of two new strands of DNA .Sequence of bases in new strand of DNA is determined by old strand and it is based on complementarity i.e. A pairs with T and G Pairs with C .
Yes, DNA contains genes that encode instructions for making proteins. These genes are transcribed into messenger RNA (mRNA), which is then translated into proteins by the ribosomes in the cell. The sequence of nitrogenous bases in DNA determines the sequence of amino acids in a protein.
Since A pairs with T, and G pairs with C, then the sequence of bases in the strand of DNA being copied determines the sequence of bases in the newly copied strand. The bases are complementary (A gives T and G gives C when copied).
The corresponding mRNA strand would be AUCG.
A DNA strand consists of a sequence of nucleotide bases: adenine (A), thymine (T), cytosine (C), and guanine (G). These bases form pairs (A-T and C-G) along the DNA double helix. The sequence of these bases along the DNA strand determines the genetic information encoded in the DNA molecule.