answersLogoWhite

0


Best Answer

It depends on what type of chemcial engineer that you are.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What do chemical engineers make within a year?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Chemical Engineering

What is average salary of chemical engineers in India?

The average salary of chemical engineers in India is 477,694 Indian Rupee per year. This is equivalent to an annual salary of 7,759 US dollars.


How much does a chemical operator make for dupont?

42,000 year


How does chemical engineering relate to engineering?

Chemical engineering is a branch of engineering (others are electrical engineering, mechanical engineering, nuclear engineering, etc.).


How do you become a nuclear engineer?

You have to know stuff. You have to be smart and know things. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you.


Which fraction of crude oil provides the chemical feedstock for the petrochemical industry?

Naphtha often provides feedstock to the petrochemical industry. This is especially true in countries in which the vehicle fleet is centered on diesel fuel (such as European countries). The United States has historically had a vehicle fleet balanced between gasoline and diesel fuels, resulting in the maximization of naphtha blended into the motor fuels pool. Therefore, most of the petrochemicals in the U.S. are produced by turning natural gas into ethylene. As of 2012 the U.S. is undergoing a slight dieselisation of its vehicle fleet; however, natural gas prices at 10 year lows continue to make natural gas the most cost effective route for producing petrochemicals in the U.S.

Related questions

What is average salary of chemical engineers in India?

The average salary of chemical engineers in India is 477,694 Indian Rupee per year. This is equivalent to an annual salary of 7,759 US dollars.


Chemical Engineer Career Information?

Chemical engineers are involved in the application of chemicals to practical processes. Chemical engineers are knowledgeable about the behavior and application of chemicals- and are often highly educated in the field of chemistry. Chemical engineers often work in the industrial field, as the work that they do is often commissioned by, and utilized for the chemical industry. Chemical engineers could be involved in the chemical processes to produce plastics, gasoline, and other sorts of materials that are utilized by all sorts of people and companies. Chemical engineers must be highly knowledgeable about both chemistry and engineering principles, as they utilize both fields in their careers. This requires education at properly accredited post-secondary educational institutions- typically colleges and universities. Chemical engineers, on the whole have bachelor degrees, and typically hold masters and doctoral degree’s as well. This extensive education stems from the combination of the fields of chemistry and engineering. Due to the danger of chemicals, chemical engineers are required to go through stringent procedures to ensure the safety of both the engineer and client. Chemical engineers must go through state regulated licensing procedures- which can vary from state to state. There is typically written and practical examinations, as chemical engineers must be knowledgeable on safety procedures and protocols within their field. Individual employers may have other requirements- for example, federal agencies may require that a chemical engineer have a certain security clearance in order to work for the federal government. The extensive education and licensing pays off though, as starting salaries can be between 55,000 and 70,000 dollars for graduating students. Chemical engineers can make as much as 105,000 dollars a year on average, with the potential to make more depending upon the employer. Potential employers of chemical engineers can include chemical companies, city, state, and federal agencies and organizations, as well as private firms specifically devoted to the field of chemical engineering. Chemical engineers may find themselves working as project overseers, managers, researchers, as well as the possibility of teaching in post-secondary educational institutions like colleges and universities. Many employers expect a high degree of professionalism from employed chemical engineers.


How much do computer software engineers in a year?

They make $80 519 per year.


How much money does a roller coaster designer make?

Roller coasters are designed by engineers. Roller coaster engineers make anywhere between $45,000 and $119,000 per year. Most roller coaster engineers are mechanical engineers and the median salary for mechanical engineers is $74,920.


How much do telecommunication engineers make per year?

About $40,000-$50,000


How much money do railroad engineers make?

CN RAIL Engineers 90-115000 per year CN RAIL Conductors 85 - 100000 per year


How much does an engineer get paid?

Engineers are paid typically based on their experience and skill. Junior engineers make between 40 and 50 thousand dollars per year. Regular engineers make between $50 -70 thousand and master engineers make between $70 to 95 thousand.


Who makes more Chemical or electrical engineer?

Honestly, this varies from year-to-year but for the past five years, electrical engineers have come out on top in the salary challenge.


How much money do pyrotechnic engineers make?

Around 79 thousand a year.


How much money do Petroleum Engineers make?

Good petroleum engineers make anywhere from 500,000 up to 10 -15 million a year. This just depends on how well they do with their companies.


How much money do aerospace engineers make an hour?

A year they make a total amout of 214,000 dallors


How much does environmental engineers make a year?

on average about 80k a year. if you have a masters degree or a lot of experience you would make much more