answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What do you get when you divide output work by input force?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

Difference between force output and Work Output?

force output x distance = work output ~same for input


What in an output force?

In a closed system in the "real world" in which we live, there are losses associated with friction and other actions. These forces "take energy" from the system between its input and output. When we apply force to the imput of a system, some is lost as the force is transferred through that system. That means that the output force we observe will always be a bit less than the input force. A transmission in a vehicle is a classic example of the idea that there are losses between the input and the output of a system. The input from the engine will always be a bit greater than the output at the tailshaft (or axles for a transaxle) due to losses within the transmission.


How do you find the input force and output force?

let the input force be F1,and the distance between point of application of input force and the lever point is x1,similarly if output force iis F2,and distance of it's point of apllication is x2,then efficiency of the lever is (F2*x2)/(F1*x1) actually F*x gives the work done,and efficiency of any machine is output work/input work


What is the difference between mechanical advantage and Efficiency?

A mechanism with a positive mechanical advantage is one in which the input force is greater than the output force. This is compensated for by the fact that the distance moved by the input is greater than the output so that in an ideal machine, the work input (Force*Distance) is the same as the work output. In real life, though, you always lose some energy - in the form of frictional heat, or sound.A negative mechanical advantage is the opposite. A small distance moved by the input is converted to a large distance moved by the output. But the force in the output is correspondingly reduced.A mechanism with a positive mechanical advantage is one in which the input force is greater than the output force. This is compensated for by the fact that the distance moved by the input is greater than the output so that in an ideal machine, the work input (Force*Distance) is the same as the work output. In real life, though, you always lose some energy - in the form of frictional heat, or sound.A negative mechanical advantage is the opposite. A small distance moved by the input is converted to a large distance moved by the output. But the force in the output is correspondingly reduced.A mechanism with a positive mechanical advantage is one in which the input force is greater than the output force. This is compensated for by the fact that the distance moved by the input is greater than the output so that in an ideal machine, the work input (Force*Distance) is the same as the work output. In real life, though, you always lose some energy - in the form of frictional heat, or sound.A negative mechanical advantage is the opposite. A small distance moved by the input is converted to a large distance moved by the output. But the force in the output is correspondingly reduced.A mechanism with a positive mechanical advantage is one in which the input force is greater than the output force. This is compensated for by the fact that the distance moved by the input is greater than the output so that in an ideal machine, the work input (Force*Distance) is the same as the work output. In real life, though, you always lose some energy - in the form of frictional heat, or sound.A negative mechanical advantage is the opposite. A small distance moved by the input is converted to a large distance moved by the output. But the force in the output is correspondingly reduced.


What means work output divided by work input?

input force x input distance > output force x output distance -Novanet

Related questions

What is the advantages of a simple machine?

output force divide by the input force is the mechanical advantage of a simple machine.The output force is the force that is exerted by the machine on an object, and the input force is the force that we exert on a machine.


Difference between force output and Work Output?

force output x distance = work output ~same for input


What is the definition of output and input work?

Work Input- The work done on a machine as the input force acts through the input distance. Work Output - The work done by a machine as the output force acts through the output distance (What the machine does to the object (dependent on the force) to increase the output distance).


What in an output force?

In a closed system in the "real world" in which we live, there are losses associated with friction and other actions. These forces "take energy" from the system between its input and output. When we apply force to the imput of a system, some is lost as the force is transferred through that system. That means that the output force we observe will always be a bit less than the input force. A transmission in a vehicle is a classic example of the idea that there are losses between the input and the output of a system. The input from the engine will always be a bit greater than the output at the tailshaft (or axles for a transaxle) due to losses within the transmission.


What is a comparison of a machine's work input and work output force?

Mechanical efficiency


How do you find the input force and output force?

let the input force be F1,and the distance between point of application of input force and the lever point is x1,similarly if output force iis F2,and distance of it's point of apllication is x2,then efficiency of the lever is (F2*x2)/(F1*x1) actually F*x gives the work done,and efficiency of any machine is output work/input work


How does a crowbar make work easier?

it makes work easier by changing an input force into a larger output force.


How does input force output orce and load force work together in a lever?

because if there wasn't an input force, or any one of those, the machine would not work properly


What is the difference between mechanical advantage and Efficiency?

A mechanism with a positive mechanical advantage is one in which the input force is greater than the output force. This is compensated for by the fact that the distance moved by the input is greater than the output so that in an ideal machine, the work input (Force*Distance) is the same as the work output. In real life, though, you always lose some energy - in the form of frictional heat, or sound.A negative mechanical advantage is the opposite. A small distance moved by the input is converted to a large distance moved by the output. But the force in the output is correspondingly reduced.A mechanism with a positive mechanical advantage is one in which the input force is greater than the output force. This is compensated for by the fact that the distance moved by the input is greater than the output so that in an ideal machine, the work input (Force*Distance) is the same as the work output. In real life, though, you always lose some energy - in the form of frictional heat, or sound.A negative mechanical advantage is the opposite. A small distance moved by the input is converted to a large distance moved by the output. But the force in the output is correspondingly reduced.A mechanism with a positive mechanical advantage is one in which the input force is greater than the output force. This is compensated for by the fact that the distance moved by the input is greater than the output so that in an ideal machine, the work input (Force*Distance) is the same as the work output. In real life, though, you always lose some energy - in the form of frictional heat, or sound.A negative mechanical advantage is the opposite. A small distance moved by the input is converted to a large distance moved by the output. But the force in the output is correspondingly reduced.A mechanism with a positive mechanical advantage is one in which the input force is greater than the output force. This is compensated for by the fact that the distance moved by the input is greater than the output so that in an ideal machine, the work input (Force*Distance) is the same as the work output. In real life, though, you always lose some energy - in the form of frictional heat, or sound.A negative mechanical advantage is the opposite. A small distance moved by the input is converted to a large distance moved by the output. But the force in the output is correspondingly reduced.


Do you use input force or output force to calculate work?

You can push or pull in the same direction


What means work output divided by work input?

input force x input distance > output force x output distance -Novanet


What is the mechanical advantage of using machines?

Mechanical advantage is the ratio of output force to input force. In other words, F out/F in. Output force is the work done by the machine while input force is what the host (you) did to the machine. Work is always displayed with the label of joules.