If by 'head node' you simply mean the first node, then yes; but if 'head node' means the special element which is not supposed to ever be deleted (aka sentinel node), then no.
It depends on what you mean by node. In great generality, I think it's malloc you might want to use.
the devices connected to a network
g
Tumor, Node, Metastases
_node* search (_node* head, _key key) { _node* node; for (node=head; node != NULL;;) { if (key == node->key) return node; else if (key < node.>key) node = node->left; else node = node->right; } return node; }
Please talk to a physician about this.
It means 3 or more leaves at each node.
for (node=head; node!=null; node=node->next) printnode(node);
Refer to http://cslibrary.stanford.edu/110/BinaryTrees.html void mirror(struct node* node) { if (node==NULL) { return; } else { struct node* temp; // do the subtrees mirror(node->left); mirror(node->right); // swap the pointers in this node temp = node->left; node->left = node->right; node->right = temp; } }
Yes. The tail node's next node is the head node, while the head node's previous node is the tail node.
Given a list and a node to delete, use the following algorithm: // Are we deleting the head node? if (node == list.head) { // Yes -- assign its next node as the new head list.head = node.next } else // The node is not the head node { // Point to the head node prev = list.head // Traverse the list to locate the node that comes immediately before the one we want to delete while (prev.next != node) { prev = prev.next; } end while // Assign the node's next node to the previous node's next node prev.next = node.next; } end if // Before deleting the node, reset its next node node.next = null; // Now delete the node. delete node;