A reaction at equilibrium will respond to balance a change - apex
(Explanation): The answer is NOT "a new equilibrium ratio will form", because although this is true, it will not necessarily always happen and is not what le chatelier's principle is about. His principle focuses on the reaction changing to cancel out or balance the change in equilibrium. Therefore, this is the correct answer.
The reaction shifts to remove the heat APEX
All concentrations would change (apex)
Le Chatelier's principle says that if a system in chemical equilibrium is disturbed, the system will move in such a way as to nullify that change.
Le Chatelier's principle states that when a system at equilibrium is disturbed by a change in temperature, pressure, or concentration of reactants or products, the system will shift to counteract the disturbance and restore equilibrium. This means the system will adjust its conditions in order to minimize the effect of the disturbance and return to equilibrium.
Le Chatelier's Principle states that when a chemical system at equilibrium is disturbed by a change in conditions, the system will shift to counteract the change and establish a new equilibrium. This can involve changes in concentration, pressure, or temperature to minimize the disturbance.
The answer is "The equilibrium would shift to reduce the pressure change" on Apex
According to Le Chatelier's principle, an increase in pressure in a gaseous system will shift the equilibrium position toward the side with fewer moles of gas. This is because the system will respond to counteract the change by favoring the direction that reduces pressure. If both sides of the reaction contain an equal number of gas moles, the pressure increase will have little to no effect on the equilibrium position.
The reaction shifts to remove the heat APEX
Le Chatelier's Principle states that a system at equilibrium will respond to stress by shifting in a direction that minimizes the effect of the stress. This means that when a change is made to a system at equilibrium (such as temperature, pressure, or concentration), the system will adjust in order to restore equilibrium.
Le Chatelier's principle states that if a system at equilibrium is subjected to a change in concentration, temperature, or pressure, the system will adjust to counteract that change and restore equilibrium. In the case of iodine (I2) solubility in a solution of potassium iodide (KI), when the concentration of KI increases, the equilibrium shifts to favor the formation of more iodide ions (I⁻) from the dissociation of KI. This increases the availability of I⁻ ions, which can form a soluble complex with I2, thus enhancing the overall solubility of iodine in the solution.
Le Chatelier's principle states that a system at equilibrium will respond to a disturbance by shifting its equilibrium position in a way that minimizes the effect of the disturbance. This means if you change the conditions of a reaction at equilibrium, the system will adjust to counteract that change and establish a new equilibrium.
Le Chatelier's principle states that a system at equilibrium will respond to stress by shifting to minimize the effect of the stress and re-establish equilibrium. This means that if a system is subjected to a change in concentration, temperature, or pressure, it will adjust its composition to counteract the change.