it makes us roatate around in circular motions
As an object on Earth's surface, you move along with the planet due to inertia. The force required to overcome Earth's gravitational pull and throw objects out into space is much greater than the force generated by the rotation of the Earth. This is why we stay grounded as the Earth rotates.
Water stays put on the Earth's surface as the force of gravity pulls it towards the center of the planet. The rotation of the Earth creates a centrifugal force that counteracts the gravity, resulting in a balance where water doesn't spill as the Earth rotates.
At the center of the Earth, the centrifugal force is zero because all mass is evenly distributed around that point, resulting in a gravitational force that is balanced. As you move away from the center, both gravitational and centrifugal forces increase. At the surface of the Earth, the centrifugal force is present due to the rotation of the planet.
Gravity is the force that pulls objects towards the center of the Earth, while centrifugal force is the outward force acting on an object moving in a circular path. On the surface of the Earth, gravity is much stronger than centrifugal force, which is why objects remain grounded. At the equator, where the centrifugal force is strongest due to the Earth's rotation, it partially counteracts gravity making objects slightly lighter.
Centrifugal energy refers to the outward force generated when an object rotates around a central point. This force pushes objects away from the center of rotation and is often experienced in situations such as spinning rides or centrifuges used in laboratories.
In the context of centrifugal force, "G" is a unit of measurement representing the force of gravity. When something experiences centrifugal force of 2000 G, it means the force applied to it is 2000 times that of Earth's gravitational force.
No, centrifugal force is greater at the poles than at the equator because the Earth's rotation causes a bulging effect at the equator that counteracts the centrifugal force. This is why objects weigh slightly less at the equator compared to the poles.
The Earth's gravitational pull keeps us grounded despite its rapid rotation. The force of gravity is stronger than the centrifugal force created by the Earth's rotation, so we remain firmly in place on the surface.
Centrifugal
Yes. Sort of. If you consider the rotating system from the point of view of somebody OUTSIDE the system (not participating in the rotation), no "centrifugal force" is required to explain anything; there is an unbalanced centripetal (center-seeking) force, which accelerates whatever rotates, toward the center.
Reactive centrifugal force is not the same thing as centrifugal force. Reactive centrifugal force is the reaction force. It is the reaction force reacting to a centripetal force.
Two reasons: 1. Different distances from the Earth's center; 2. A "centrifugal force" that counteracts gravity in part.Two reasons: 1. Different distances from the Earth's center; 2. A "centrifugal force" that counteracts gravity in part.Two reasons: 1. Different distances from the Earth's center; 2. A "centrifugal force" that counteracts gravity in part.Two reasons: 1. Different distances from the Earth's center; 2. A "centrifugal force" that counteracts gravity in part.