The Hardy-Weinberg Equilibrium equation:
p2 + 2pq + q2 = 1
p is frequency of dominant allele A
q is frequency of recessive allele a
p + q always equals 1
pp or p2 is probability of AA occurring
qq or q2 is probability of AA occurring
2pq is probability of Aa occurring (pq is probability of Aa, qp is probability of aA, so 2pq is probability of all heterozygotes Aa)
These add up to 1 because they represent all possibilities.
The frequency of the homozygous recessive genotype
The frequency of the homozygous dominant genotype.
The frequency of the homozygous dominant genotype.
The p and q variables in the Hardy-Weinberg equation represent the frequencies of the two alleles in a population. The equation is often written as p^2 + 2pq + q^2 = 1, where p and q represent the frequencies of the dominant and recessive alleles, respectively.
p and q represent the frequencies of two types of alleles.
p represents the square root of the frequency of the homozygous genotype AA.
The Hardy-Weinberg Equilibrium equation: p2 + 2pq + q2 = 1 p is frequency of dominant allele A q is frequency of recessive allele a p + q always equals 1 pp or p2 is probability of AA occurring qq or q2 is probability of AA occurring 2pq is probability of Aa occurring (pq is probability of Aa, qp is probability of aA, so 2pq is probability of all heterozygotes Aa) These add up to 1 because they represent all possibilities. The frequency of the homozygous recessive genotype
Hardy-Weinberg problems involve calculating allele frequencies in a population to determine if it is in genetic equilibrium. Examples include calculating the frequency of homozygous dominant, heterozygous, and homozygous recessive individuals. These problems can be solved using the Hardy-Weinberg equation: p2 2pq q2 1, where p and q represent the frequencies of the two alleles in the population.
p represents the square root of the frequency of the homozygous genotype AA.
p^2 + 2pq + q^2 = 1
To solve a Hardy-Weinberg problem, you need to use the formula p2 2pq q2 1, where p and q represent the frequencies of two alleles in a population. First, determine the allele frequencies using the given information. Then, use the formula to calculate the expected genotype frequencies. Compare the expected and observed genotype frequencies to determine if the population is in Hardy-Weinberg equilibrium.
p2 + 2pq + q2 = 1 and p + q = 1p = frequency of the dominant allele in the populationq = frequency of the recessive allele in the populationp2 = percentage of homozygous dominant individualsq2 = percentage of homozygous recessive individuals2pq = percentage of heterozygous individuals
The Hardy Weinberg equation is: p2 + 2pq + q2 = 1 Where p and q are the initial frequencies for the two alleles in question. This equation suggests that the three possible genotypes (homozygous p, heterozygous pq, and homozygous q) will reach a frequency equilibrium (i.e. stable frequency) in those proportions described above, if the following conditions are met: # Large population # No mutation # No selection# No emigration/immigration # Random mating In other words, evolution-- allelic frequency change within a population-- will not occur if the above 5 conditions are met.