IP Security
If the values of the function are all positive, then the integral IS the area under the curve.
gemetrically the definite integral gives the area under the curve of the integrand. explain the corresponding interpretation for a line integral.
The are under the curve on the domain (a,b) is equal to the integral of the function at b minus the integral of the function at a
A line integral can evaluate scalar and vector field functions along a curve/path. When applied on vector field, line integral is considered as measure of the total effect of the vector field along a specific curve whereas in scalar field application, the line integral is interpreted as the area under the field carved out by a particular curve.Line integral has many applications in physics. In mechanics, line integral is used to determine work done by a force in moving an object along a curve. In circuit analysis, it is used for calculating voltage.
the hide slide feature is under a tab
There are two main definitions. One defines the integral of a function as an "antiderivative", that is, the opposite of the derivative of a function. The other definition refers to an integral of a function as being the area under the curve for that function.
The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.
Is the integral of the curve - between the two end points.
The definite integral of any function identically equal to zero between any two points is zero. Integral is the area under the graph of the given function. Sometimes the terms "integral" or "indefinite integral" are used to refer to the general antiderivative of a function, especially in many textbooks. In this case, the indefinite integral is equal to an arbitrary constant, and it is important to distinguish between these two cases.
Both kinds of integrals are essentially calculations of areas under curves. In a definite integral the surface whose area is to be calculated is planar. In a line integral the surface whose area to be calculated might occupy two or more dimensions. You might be interested in the animated diagrams in the wikipedia article for the line integral.
geometically , the definite integral gives the area under the curve of the integrad .
Differential calculus is concerned with finding the slope of a curve at different points. Integral calculus is concerned with finding the area under a curve.