Gravity doesn't change.
The force that changes is air resistance and the force that stay the same is gravity.
The force down remains constant.force down (newtons) = (mass (kg) * acceleration due to gravity ((m/s)/s) ).The force up varies with velocity and drag coefficient ( which increases significantly when the chute opens).force up (newtons) = velocity2 * drag coefficient
When a skydiver opens his parachute, air resistance (also known as drag force) increases. This is due to the parachute creating a larger surface area and creating more resistance against the air, which slows down the skydiver's fall. This increased air resistance counterbalances the force of gravity acting on the skydiver.
When a parachute is deployed, the action force is the air resistance pushing against the parachute fabric. This air resistance is created by the change in the air's velocity as it passes through the canopy of the open parachute. The reaction force to this action force is the drag force created by the parachute pulling against the jumper. This drag force is created by the increase in the parachute's surface area, which slows the jumper down as they fall. The drag force is also responsible for the parachute's ability to slow the jumper's descent enough to safely reach the ground.
When a skydiver opens their parachute, air resistance increases which slows down the skydiver. Terminal velocity is the maximum speed a falling object can reach when the force of gravity is balanced by the force of air resistance. Opening the parachute decreases the skydiver's speed, allowing them to land safely.
The mutual forces of attraction between him and the Earth will not change, no matter where he goes, how he moves, or what position he assumes, as long as he remains at roughly the same distance from the center of the Earth.
Gravity is the most valuable force for a parachute. When a parachute is deployed, it creates drag forces that counteract the force of gravity, allowing the parachute and its user to descend safely to the ground.
To start with there is gravitational attraction. As soon as the skydiver starts falling, (s)he will experience the drag force due to air resistance. The gravitational force is essentially constant but the drag increases as the diver's velocity increases until it equals gravity. The diver is the falling at terminal velocity and will continue to do so until the parachute is operated.
mass
The drag force exerted by the water on the diver rapidly decelerates the diver's speed after entering the water. This force opposes the motion of the diver and causes a quick decrease in speed. Additionally, the change in medium from air to water also affects the diver's speed.
The force that changes when the parachute opens is air resistance, also known as drag force. As the parachute opens, it increases the surface area exposed to the air, which increases the drag force acting on the parachute and slows down the descent of the object attached to the parachute.
When a parachute is deployed, the action force is the air resistance pushing against the fabric of the parachute, and the reaction force is the fabric of the parachute pushing back against the air. This interaction creates drag, slowing down the descent of the person or object attached to the parachute.