2n
F = m A = (18) (36) = 648 newtons
No. Force is required for accelerated motion, but not for uniform motion.
C. 648 n
answer is (D) 120N
648 N
You can't tell from the information given. All you know is that the average acceleration is (change in speed) divided by (time for the change) = (6/8) = 0.75 meters per second2. The force required depends on the mass of the object to be accelerated by the force.
The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.
The force required to accelerate a mass is determined by Newton's second law of motion, which states that force is equal to mass multiplied by acceleration (F=ma). Therefore, the force needed to accelerate a mass is directly proportional to the mass being accelerated and the acceleration applied to it.
The net force required to accelerate the car at a rate of 2 meters per second squared with a mass of 3000 kilograms would be 6000 Newtons. This is calculated using Newton's second law, F = m*a, where F is the force, m is the mass, and a is the acceleration.
Force happens when an object of mass is accelerated, and the equation to calculate force is : force=mass/acceleration
The object is accelerated in the direction of the net (or resultant) force.
One way to think of the "g-force" is as a fictitious force - one that SEEMS to push you backwards, when you are being accelerated forward. Actually (from the point of view of an observer who is not accelerating with you), no backwards force is required - in fact, it is only by the fact that there is a forward force, NOT balanced by a backward force, that acceleration is possible in the first place.