When heated in an open flame the crystals are dehydrated and turn grayish-white.
-www.wikipedia.com
When copper sulfate is heated, it decomposes to form copper oxide and sulfur dioxide gas.
When hydrated copper sulfate is heated, it loses its water molecules to form anhydrous copper sulfate. Since the molar ratio between the two forms is 1:1, if 6.4 moles of hydrated copper sulfate is heated, 6.4 moles of anhydrous copper sulfate will be produced.
Adding water to heated copper sulfate crystals is a chemical change. When water is added to heated copper sulfate crystals, the copper sulfate undergoes a chemical reaction where it dissolves in the water to form a solution. This is a chemical change because the chemical composition of the copper sulfate is altered during the process.
Copper sulfate is formed.
When copper sulfate pentahydrate is heated, it undergoes a dehydration reaction where the water molecules are released, leaving behind anhydrous copper sulfate. This process is reversible, and when anhydrous copper sulfate is exposed to moisture, it will reabsorb water and form copper sulfate pentahydrate again.
When blue copper sulphate is heated, it loses water molecules and converts to anhydrous copper sulfate, which is white in color. The blue color of copper sulfate is due to the presence of water molecules in its crystal structure.
When copper II sulfate pentahydrate is heated, it decomposes to form anhydrous copper II sulfate. The appearance of the resulting liquid is a clear, colorless solution. It does not have a specific odor.
When copper sulfate crystals are heated, they lose their water of hydration and turn into anhydrous copper sulfate, which is a white powder. The color change from blue to white signifies the removal of water molecules.
Copper sulfate solution does evaporate when heated. As the solution is heated, the water molecules in the solution gain enough energy to overcome the intermolecular forces holding them in the liquid state, and hence evaporate into the air, leaving behind solid copper sulfate crystals.
When copper(II) sulfate is heated, it undergoes thermal decomposition and breaks down into copper(II) oxide and sulfur dioxide gas. The blue color of copper(II) sulfate fades as it loses water molecules during heating.
Crystallization is commonly used to purify copper sulfate. The solution containing copper sulfate is heated to dissolve the impurities, then cooled slowly to allow copper sulfate crystals to form and separate from the impurities. The pure copper sulfate crystals can then be separated from the solution through filtration.
It becomes a non-crystalline, powdery anhydrous salt.The hydrated (pentahydrate) form is chalcanthite, a bright blue crystal. The rare anhydrous ore form is called chalcocyanite, a gray or pale-green powdery rock.(If heated to 650 °C, copper sulfate becomes copper oxide and sulfur trioxide.)