it increases in direct proportion to the force applied
The acceleration increases.
its acceleration will be increased
Acceleration increases
If you increase the force on an object acceleration increases . As F = m*a, where F = Force , m = mass of the object & a = acceleration
If you increase the force on an object acceleration increases . As F = m*a, where F = Force , m = mass of the object & a = acceleration
Acceleration is a net force that is inversely dependent on mass, therefore if an object's mass decreases, acceleration increases.
I'm guessing this question relates to the formula Force=mass*acceleration. in this case if the mass stays the same, then Force and acceleration are directly proportional (if one goes up, then by mathematical law, the other one also has to)
F=m.a , a=F/m; acceleration is directly proportional with force. acceleration increase while force increase.
My bad, im asking why the formula isnt acceleration= force - mass
If force increases while mass stays the same, acceleration will also increase. This is because acceleration is directly proportional to the force applied, according to Newton's second law of motion (F=ma). So, as the force increases, the acceleration of the object will also increase if the mass remains constant.
When you increase the acceleration of a mass, the force required to achieve that acceleration also increases. This is described by Newton's second law of motion, which states that force is directly proportional to mass and acceleration (F = ma). In other words, a greater acceleration requires a greater force to be applied to the mass in order to achieve it.
If the force on an object increases while its mass remains constant, the object's acceleration will also increase. This is because acceleration is directly proportional to the force acting on the object, according to Newton's second law of motion (F = ma).