It increases.
(Standard rocket science.)
Acceleration is a net force that is inversely dependent on mass, therefore if an object's mass decreases, acceleration increases.
When mass increases, the acceleration of the object decreases if the force remains constant, as described by Newton's second law (F=ma). Therefore, a greater force is required to accelerate an object with higher mass at the same rate as an object with lower mass.
The net force acting on an object is directly proportional to its acceleration, according to Newton's second law of motion. When the net force increases, the acceleration of the object increases as well. Conversely, when the net force decreases, the acceleration of the object decreases.
Acceleration is a net force that is inversely dependent on mass, therefore if an object mass increases ,acceleration decreases
If force is applied to an object and the object's mass remains constant, the acceleration of the object will change. According to Newton's second law of motion (F = ma), if the mass is constant and the force increases, the acceleration will also increase. Conversely, if the force decreases, the acceleration will decrease.
Hold on there. Mass doesn't control the force. Force controls the acceleration. As the mass of an object decreases, less force is required to produce the same acceleration. If the accelerating force is gravitational, that force will decrease. If it is not, then the force will not decrease.
its acceleration will be increased
its acceleration will be increased
If you increase the force on an object acceleration increases . As F = m*a, where F = Force , m = mass of the object & a = acceleration
If you increase the mass of an object and keep the force constant, the acceleration of the object will decrease because the force-to-mass ratio decreases. Conversely, if you increase the force applied to an object while keeping the mass constant, the acceleration of the object will increase because the force-to-mass ratio increases.
If you increase the force on an object acceleration increases . As F = m*a, where F = Force , m = mass of the object & a = acceleration
If the force on an object increases, the acceleration of the object will also increase. This relationship is described by Newton's second law of motion, which states that the acceleration of an object is directly proportional to the net force acting on it.