it changes
If the frequency of a sound wave is multiplied by ten, the wavelength will decrease by a factor of ten. This is because the speed of sound in a given medium remains constant, so when frequency increases, wavelength decreases proportionally to maintain the speed of sound.
The wavelength of a sound wave decreases when it travels through water rather than air, as sound travels faster in water due to its higher density compared to air. This increase in speed causes the wave to compress more frequently, resulting in a shorter wavelength.
To find the wavelength, the following formula applies: λ = ν / f That in common words is: Wavelength = Wave's Speed / Wave's Frequency So, Wavelength of sound wave = Speed of sound wave / Frequency of sound wave Now, Speed of sound wave is 343 m/s, so Wavelength of sound wave = 343 m/s / Frequency of sound wave Frequency of sound waves audible to a human ear range between 20 Hz to 20 kHz. So filling the desired sound frequency in the equation above you get the desired wavelength of that sound wave.
Lowering the frequency of a wave on a string will result in a longer wavelength and a lower pitch sound.
No, the wavelength of a sound does not change when the intensity or loudness of the sound increases. The wavelength of a sound wave depends on the frequency of the sound, which is determined by the source of the sound.
The multiple reflection of a single sound wave is an echo.
The characteristics of a sound wave is the Amplitude, Frequency, Wavelength, time period, and velocity. The sound wave itself is a longitudinal wave that shows the rarefactions and compressions of a sound wave.
Sound wave reflection occurs when a sound wave hits a surface and bounces back. The factors that influence the reflection of sound waves include the angle of incidence, the nature of the surface, and the frequency of the sound wave.
frequency of wave is inversely proportional to wavelength
frequency of wave is inversely proportional to wavelength
With the same speed -Apex (1.2.4)
Wavelength is halved.