gago.
When a compass is brought closer to a magnet, the compass needle will align itself with the magnetic field of the magnet. This alignment occurs because the magnetic field of the compass interacts with the magnetic field of the magnet, causing the needle to point towards the magnet.
When a compass is brought into a magnetic field, the needle of the compass will align itself with the magnetic field lines. This is because the needle is a magnet itself and is influenced by the magnetic field of the Earth or any external magnetic field it is brought into.
gago.
That depends on which pole of the magnet it is moved close to. If it is brought close to the "South" pole of the magnet, the "North" pointer of the compass will be attracted to the magnet. If it is brought close to the "North" pole of the magnet, the "North" pointer of the compass will be repelled and will point AWAY from the magnet, while the "South" end of the compass pointer will point to the magnet.
A compass needle is a tiny magnet that aligns with the magnetic field around it. When brought near an electromagnet, the magnetic field produced by the electromagnet affects the compass needle, causing it to align with the new magnetic field created by the electromagnet.
it becomes magnetic :)
A compass can be used to trace the magnetic field of a magnet by placing the compass near the magnet. The needle of the compass will align with the magnetic field lines, allowing you to visualize the direction of the field. By moving the compass around the magnet, you can map out the shape and direction of the magnetic field.
A bar magnet interacts with a compass by aligning the compass needle along the magnetic field lines of the magnet. This causes the compass needle to point towards the North Pole of the magnet, allowing the compass to indicate the direction of the magnetic field.
Yes, a compass works best when it is close to a magnet because the magnet helps align the compass needle with Earth's magnetic field. The closer the compass is to a magnet, the stronger the magnetic force acting on the needle, making it easier for the compass to point in the correct direction.
PermanentThere is no source of current in a compass, therefore the magnet is a permanent magnet.
Because the primary purpose of a compass is to react to the magnetic field of the earth, it get affect by a nearby compass when the compass' magnetic field is stronger than that of the earth. As the magnet is moved away, the strength of its field diminishes and the compass goes back to 'normal' - pointing north.
A compass needle aligns with the Earth's magnetic field, which is produced by the planet's core. The needle of a compass is typically a magnet itself, or contains a magnet, allowing it to interact with the Earth's magnetic field and point towards the magnetic North Pole. So, the presence of a magnet in the compass is essential for its functionality.