Electricity is formed (electrons move )
The needle of a compass will deflect from its original position when a wire carrying an electric current is placed across it. This is due to the magnetic field created by the current in the wire, which interacts with the magnetic field of the compass needle, causing it to move.
When a current-carrying wire is placed in a magnetic field, a force is exerted on the wire due to the interaction between the magnetic field and the electric current. This force causes the wire to move or experience a deflection, depending on the orientation of the wire and the magnetic field.
Placing a compass under a current-carrying wire can cause the needle to deflect due to the magnetic field produced by the electric current. This phenomenon, known as the right-hand rule, demonstrates the relationship between electric current and magnetic fields.
electricity is induced
Electric current is produced.Nothing until it is moved at right angles{90 degrees) to the magnetic field between it's poles. The faster it moves the larger the voltage measured between the ends of the wire.
They all end up going in different directions so that it is magnetic anymore.
A ferromagnetic material, such as iron or steel, can be placed inside a coil of wire to increase the magnetic effects when electricity is applied. This is because the ferromagnetic material enhances the magnetic field produced by the coil due to its high magnetic permeability.
When an electric current flows through a wire, it creates a magnetic field around the wire. If this wire is placed in the presence of another magnetic field, the two fields can interact, causing the wire to deflect. This phenomenon is known as the magnetic deflection of an electric current.
Hans Christian Oersted discovered the magnetic field of electric current in 1820. He observed that a compass needle was deflected when placed near a wire carrying an electric current, showing a relationship between electricity and magnetism.
When a square wire loop is placed in a time-varying magnetic field, an electric current is induced in the loop. This current creates a magnetic field that opposes the change in the original magnetic field, leading to a phenomenon known as electromagnetic induction.
Yes, the charges inside a conductor will rearrange when an external charge is placed near or on the surface of the conductor, resulting in an induced electric field inside the conductor. This induced electric field will influence the external charge's behavior without the need for direct contact between the charges.
The net electric field inside a dielectric decreases due to polarization. The external electric field polarizes the dielectric and an electric field is produced due to this polarization. This internal electric field will be opposite to the external electric field and therefore the net electric field inside the dielectric will be less.