Hydrogen bonds
Generally hydrogen bonds between the different base pairs holds the double helix together.
Hydrogen bonds that form between the nitrogenous bases hold the double helix together.
The two halves of a DNA double helix are held together by hydrogen bonds between complementary nitrogenous bases. Adenine pairs with thymine and guanine pairs with cytosine. This base pairing allows for the specificity and stability of the DNA molecule.
the bases are paired by hydrogen bounds
The chemical interaction that holds two strands of a DNA double helix together is hydrogen bonding. Adenine pairs with thymine, and guanine pairs with cytosine through specific hydrogen bond interactions, forming the base pairs that stabilize the double helical structure of DNA.
The DNA molecule forms a double helix. The linear DNA chromosomes of eukaryotes form a highly supercoiled double helix.
double helix
The weak chemical bond important in holding the DNA double helix together is the hydrogen bond. These bonds form between the nitrogenous bases of the two DNA strands, specifically between adenine and thymine, and guanine and cytosine. The hydrogen bonds provide stability to the double helical structure of DNA.
double helix
Hydrogen Bonds are the bonds that hold the complimentary bases together. G to C and A to T. However the bonds that hold the nucleotides together on each side of the double helix are called Phosphodiester bonds or linkages.
Screws have a helix design, that drills into the wood, and also holds materials together.
Each rung of the DNA double helix is made up of a pair of nitrogenous bases (adenine-thymine or guanine-cytosine). The sides of the ladder are made up of alternating sugar (deoxyribose) and phosphate molecules. Hydrogen bonds hold the nitrogenous bases of the rungs together, creating the structure of the DNA double helix.