Its called a superconducting wire.
A wire carrying electric current becomes hot due to the resistance in the wire. As the electric current flows through the wire, the resistance causes some of the electrical energy to be converted into heat energy, which raises the temperature of the wire.
The movement of charged particles along a wire is called electric current.
A greater electric current in a wire can be induced by increasing the voltage applied across the wire or decreasing the resistance of the wire. Both factors contribute to Ohm's Law (V=IR), where V is voltage, I is current, and R is resistance. Increasing the voltage or decreasing the resistance will lead to a higher current flowing through the wire.
It's resistance to electric current increases.
The result of an electric current flowing through a wire is the movement of electric charge, typically in the form of electrons, from one point to another. This flow of charge creates a magnetic field around the wire and generates heat due to resistance in the wire material. The amount of current flowing is determined by the voltage applied and the resistance of the wire.
The electric potential in a wire in an electrical circuit is the amount of electric potential energy per unit charge. As the wire carries current, the electric potential decreases along the wire due to the resistance of the wire. This relationship is described by Ohm's Law, which states that the electric potential difference across a wire is directly proportional to the current flowing through it and inversely proportional to the resistance of the wire.
Electric current flowing in a wire is opposed by electrical resistance. This resistance is caused by factors such as the material of the wire, its length, and its cross-sectional area. It results in the conversion of electrical energy into heat.
Electric current does not drop. Electric voltage, however, drops across a wire because the wire has non-zero resistance. (Do not confuse electric current with electric voltage - they are not the same.)The reason current does not drop is that, in a series circuit, according to Kirchoff's current law, the current at every point in a series circuit is the same.
As voltage is increased, the electric current in a wire also increases because the relationship between voltage, current, and resistance is described by Ohm's Law (V = IR). If resistance remains constant, a higher voltage will result in a higher current flowing through the wire.
When an electric current passes through a wire, the wire heats up due to the resistance in the material. The current causes electrons to flow through the wire, creating a magnetic field around it. This effect is used in electromagnets and electric motors.
A wire gets hot when an electric current flows through it, causing resistance in the wire which generates heat.
increase