answersLogoWhite

0

What is an alkenyl?

Updated: 12/15/2022
User Avatar

Bobo192

Lvl 1
8y ago

Best Answer

An alkenylation is any reaction with an alkene, especially an addition reaction.

User Avatar

Wiki User

8y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

8y ago

An alkenyl is a univalent radical derived from an alkene.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is an alkenyl?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What has the author M P Neill written?

M. P. Neill has written: 'Alkenyl succinic anhydride sizing'


In NMR the value of alkynyl proton is less than the value os alkenyl proton?

When alkynyl molecules are placed in NMR instrument the induced magnetic field of molecules are in Diamagnetic region of external magnetic field. There fore the resultant energy will be low


What has the author Avinash N Thadani written?

Avinash N. Thadani has written: 'Alkenyl- and dienylboronate tethered intramolecular diels-alder reactions' 'Boron tethered intramolecular Diels-Alder cycloadditions and addition of allyl- and crotyltrifluoroborates to carbonyl compounds in biphasic media'


What is the functional isomer of carboxylic acid?

This is homework. Wiki won't help you cheat. Time to get to work and do it yourself.


Why are chemicals used for making paper?

There are many chemicals used in the paper making process. Silicate of Magnesia, Alkyl Ketene Dimer, Sulfate of Alumina, Natural Sulfate of Lime, Ammonium Zirconium Carbonate, Anthraquinone, Silicate of Magnesia, Alkylphenol Ethoxylates, Alkenyl Succinic Anhydride, Barium Sulfate, Carboxy Methyl Cellulose, Sodium Hydroxide,


What are some seven letter words secound letter is L and the last letter Is L?

Here's a few: grep "^.l.\{4\}l$" /usr/share/dict/words | nl 1 alantol 2 albinal 3 alcogel 4 alcohol 5 alcosol 6 aldehol 7 alemmal 8 alichel 9 alismal 10 alkenyl 11 alkoxyl 12 allheal 13 almsful 14 alodial 15 aloesol 16 alumnal 17 Alumnol 18 clausal 19 clavial 20 claviol 21 cloacal 22 clypeal 23 eluvial 24 elytral 25 flannel 26 flawful 27 floreal 28 fluavil 29 fluidal 30 fluoryl 31 fluvial 32 flyball 33 flytail 34 glacial 35 gladful 36 glaieul 37 gleeful 38 glossal 39 glottal 40 gluteal 41 glyoxal 42 glyoxyl 43 illegal 44 illocal 45 illoyal 46 planful 47 plantal 48 playful 49 pleonal 50 pleural 51 plotful 52 pluteal 53 pluvial 54 sledful


What are 4 types of lipids and their function?

Fatty acylsFatty acyls, a generic term for describing fatty acids, their conjugates and derivatives, are a diverse group of molecules synthesized by chain-elongation of an acetyl-CoA primer with malonyl-CoA or methylmalonyl-CoA groups in a process called fatty acid synthesis. They are made of a hydrocarbon chain that terminates with a carboxylic acid group; this arrangement confers the molecule with a polar, hydrophilic end, and a nonpolar, hydrophobic end that is insoluble in water. The fatty acid structure is one of the most fundamental categories of biological lipids, and is commonly used as a building block of more structurally complex lipids. The carbon chain, typically between four to 24 carbons long, may be saturated or unsaturated, and may be attached to functional groups containing oxygen, halogens, nitrogen and sulfur. Where a double bond exists, there is the possibility of either a ''cis'' or ''trans'' geometric isomerism, which significantly affects the molecule's molecular configuration. ''Cis''-double bonds cause the fatty acid chain to bend, an effect that is more pronounced the more double bonds there are in a chain. This in turn plays an important role in the structure and function of cell membranes. Most naturally occurring fatty acids are of the ''cis'' configuration, although the ''trans'' form does exist in some natural and partially hydrogenated fats and oils. Examples of biologically important fatty acids are the eicosanoids, derived primarily from arachidonic acid and eicosapentaenoic acid, which include prostaglandins, leukotrienes, and thromboxanes. Other major lipid classes in the fatty acid category are the fatty esters and fatty amides. Fatty esters include important biochemical intermediates such as wax esters, fatty acid thioester coenzyme A derivatives, fatty acid thioester ACP derivatives and fatty acid carnitines. The fatty amides include N-acyl ethanolamines, such as the cannabinoid neurotransmitter anandamide.Glycerolipids (triglycerides)Glycerolipids are composed mainly of mono-, di- and tri-substituted glycerols, the most well-known being the fatty acid esters of glycerol (triacylglycerols), also known as triglycerides. In these compounds, the three hydroxyl groups of glycerol are each esterified, usually by different fatty acids. Because they function as a food store, these lipids comprise the bulk of storage fat in animal tissues. The hydrolysis of the ester bonds of triacylglycerols and the release of glycerol and fatty acids from adipose tissue is called fat mobilization. Additional subclasses of glycerolipids are represented by glycosylglycerols, which are characterized by the presence of one or more sugar residues attached to glycerol via a glycosidic linkage. Examples of structures in this category are the digalactosyldiacylglycerols found in plant membranes and seminolipid from mammaliansperm cells.GlycerophospholipidsGlycerophospholipids, also referred to as phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolismand cell signaling. Neural tissue (including the brain) contains relatively high amounts of glycerophospholipids, and alterations in their composition has been implicated in various neurological disorders. Glycerophospholipids may be subdivided into distinct classes, based on the nature of the polar headgroup at the ''sn''-3 position of the glycerol backbone in eukaryotes and eubacteria, or the ''sn''-1 position in the case of archaebacteria.Examples of glycerophospholipids found in biological membranes are phosphatidylcholine (also known as PC, GPCho or lecithin), phosphatidylethanolamine (PE or GPEtn) and phosphatidylserine (PS or GPSer). In addition to serving as a primary component of cellular membranes and binding sites for intra- and intercellular proteins, some glycerophospholipids in eukaryotic cells, such as phosphatidylinositols and phosphatidic acids are either precursors of, or are themselves, membrane-derived second messengers. Typically, one or both of these hydroxyl groups are acylated with long-chain fatty acids, but there are also alkyl-linked and 1Z-alkenyl-linked (plasmalogen) glycerophospholipids, as well as dialkylether variants in archaebacteria. SphingolipidsSphingolipids are a complex family of compounds that share a common structural feature, a sphingoid base backbone that is synthesized ''de novo'' from the amino acid serine and a long-chain fatty acyl CoA, then converted into ceramides, phosphosphingolipids, glycosphingolipids and other compounds. The major sphingoid base of mammals is commonly referred to as sphingosine. Ceramides (N-acyl-sphingoid bases) are a major subclass of sphingoid base derivatives with an amide-linked fatty acid. The fatty acids are typically saturated or mono-unsaturated with chain lengths from 16 to 26 carbon atoms.The major phosphosphingolipids of mammals are sphingomyelins (ceramide phosphocholines), whereas insects contain mainly ceramide phosphoethanolamines and fungi have phytoceramide phosphoinositols and mannose-containing headgroups. The glycosphingolipids are a diverse family of molecules composed of one or more sugar residues linked via a glycosidic bond to the sphingoid base. Examples of these are the simple and complex glycosphingolipids such as cerebrosides and gangliosides. Sterol lipidsSterol lipids, such as cholesterol and its derivatives, are an important component of membrane lipids, along with the glycerophospholipids and sphingomyelins. The steroids, all derived from the same fused four-ring core structure, have different biological roles as hormones and signaling molecules. The eighteen-carbon (C18) steroids include theestrogen family whereas the C19 steroids comprise the androgens such astestosterone and androsterone. The C21 subclass includes the progestogens as well as the glucocorticoids and mineralocorticoids. The secosteroids, comprising various forms of vitamin D, are characterized by cleavage of the B ring of the core structure. Other examples of sterols are the bile acids and their conjugates, which in mammals are oxidized derivatives of cholesterol and are synthesized in the liver. The plant equivalents are the phytosterols, such as β-sitosterol, stigmasterol, and brassicasterol; the latter compound is also used as a biomarker for algal growth. The predominant sterol in fungal cell membranes is ergosterol. Prenol lipidsPrenol lipids are synthesized from the 5-carbon precursors isopentenyl diphosphate and dimethylallyl diphosphate that are produced mainly via the mevalonic acid (MVA) pathway. The simple isoprenoids (linear alcohols, diphosphates, etc.) are formed by the successive addition of C5 units, and are classified according to number of these terpene units. Structures containing greater than 40 carbons are known as polyterpenes. Carotenoids are important simple isoprenoids that function as antioxidants and as precursors of vitamin A. Another biologically important class of molecules is exemplified by the quinones and hydroquinones, which contain an isoprenoid tail attached to a quinonoid core of non-isoprenoid origin. Vitamin E andvitamin K, as well as the ubiquinones, are examples of this class. Prokaryotes synthesize polyprenols (called bactoprenols) in which the terminal isoprenoid unit attached to oxygen remains unsaturated, whereas in animal polyprenols (dolichols) the terminal isoprenoid is reduced. SaccharolipidsSaccharolipids describe compounds in which fatty acids are linked directly to a sugar backbone, forming structures that are compatible with membrane bilayers. In the saccharolipids, a monosaccharide substitutes for the glycerol backbone present in glycerolipids and glycerophospholipids. The most familiar saccharolipids are the acylated glucosamine precursors of the Lipid A component of the lipopolysaccharides in Gram-negative bacteria. Typical lipid A molecules are disaccharides of glucosamine, which are derivatized with as many as seven fatty-acyl chains. The minimal lipopolysaccharide required for growth in ''E. coli'' is Kdo2-Lipid A, a hexa-acylated disaccharide of glucosamine that is glycosylated with two 3-deoxy-D-manno-octulosonic acid (Kdo) residues. PolyketidesPolyketides are synthesized by polymerization of acetyl and propionyl subunits by classic enzymes as well as iterative and multimodular enzymes that share mechanistic features with the fatty acid synthases. They comprise a large number of secondarymetabolites and natural products from animal, plant, bacterial, fungal and marine sources, and have great structural diversity. Many polyketides are cyclic molecules whose backbones are often further modified by glycosylation, methylation, hydroxylation, oxidation, and/or other processes. Many commonly used anti-microbial, anti-parasitic, and anti-cancer agents are polyketides or polyketide derivatives, such as erythromycins, tetracyclines, avermectins, and antitumor epothilones.