answersLogoWhite

0

Conductometric titration is a method of titration where the end point is determined by measuring the change in electrical conductivity of the solution being titrated. It is commonly used to determine the concentration of ions in a solution.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Chemistry

What are the disadvantages of conductometric titration?

Disadvantages of conductometric titration include potential interferences from impurities or ions in the sample, difficulty in detecting equivalence points accurately, and the sensitivity of the method to changes in temperature and electrode conditions. Additionally, conductometric titration may not be suitable for samples with low conductivity or nonionic compounds.


Types of conductometric titration?

Some types of conductometric titrations include acid-base titrations, redox titrations, and precipitation titrations. Conductometric titration involves measuring the change in electrical conductivity as reactants are titrated against each other until an equivalence point is reached.


What are the type of conductometric titration?

The types of conductometric titrations include strong acid-strong base titrations, weak acid-strong base titrations, weak base-strong acid titrations, and precipitation titrations. Conductometric titrations measure the change in electrical conductivity of a solution as a titrant is added, allowing for the determination of the endpoint of the reaction.


What are the differences between conductometric and volumetric titrations?

Conductometric titrations measure the change in electrical conductivity during a titration, while volumetric titrations measure the volume of titrant needed to reach the equivalence point. Conductometric titrations are more sensitive to small changes in concentration, while volumetric titrations are more straightforward to perform and interpret.


Why conductometric titration cannot be applied for redox reaction?

Conductometric titration measures change in conductivity, which is not directly proportional to the redox reaction progress in the solution. This is because redox reactions involve electron transfer, which does not directly affect the conductivity of the solution. Conductometric titration is more suitable for acid-base reactions or precipitation reactions where ions are involved.

Related Questions

Common tiration involves the reaction of an acidic solution with a basic solution and is called?

Neutralization.


What are the disadvantages of conductometric titration?

Disadvantages of conductometric titration include potential interferences from impurities or ions in the sample, difficulty in detecting equivalence points accurately, and the sensitivity of the method to changes in temperature and electrode conditions. Additionally, conductometric titration may not be suitable for samples with low conductivity or nonionic compounds.


Types of conductometric titration?

Some types of conductometric titrations include acid-base titrations, redox titrations, and precipitation titrations. Conductometric titration involves measuring the change in electrical conductivity as reactants are titrated against each other until an equivalence point is reached.


What are the type of conductometric titration?

The types of conductometric titrations include strong acid-strong base titrations, weak acid-strong base titrations, weak base-strong acid titrations, and precipitation titrations. Conductometric titrations measure the change in electrical conductivity of a solution as a titrant is added, allowing for the determination of the endpoint of the reaction.


What are the differences between conductometric and volumetric titrations?

Conductometric titrations measure the change in electrical conductivity during a titration, while volumetric titrations measure the volume of titrant needed to reach the equivalence point. Conductometric titrations are more sensitive to small changes in concentration, while volumetric titrations are more straightforward to perform and interpret.


What electrodes are used in conductometric titrations?

The platinum electrode is used in coductometry.


Why conductometric titration cannot be applied for redox reaction?

Conductometric titration measures change in conductivity, which is not directly proportional to the redox reaction progress in the solution. This is because redox reactions involve electron transfer, which does not directly affect the conductivity of the solution. Conductometric titration is more suitable for acid-base reactions or precipitation reactions where ions are involved.


Why AC is used at high frequncy in conductometric titration?

AC is used at high frequencies in conductometric titration to minimize electrolysis effects and polarization at the electrode surface. At high frequencies, these effects are reduced, resulting in better sensitivity and accuracy of the titration measurements. Additionally, using high frequency AC helps to maintain a constant electrolyte concentration and minimize errors in the conductometric titration process.


What is the principle of conductometric titration?

The principle of conductometric titration involves measuring the change in electrical conductivity of a solution as a titrant is added to a sample solution. This change in conductivity occurs due to the formation or consumption of ions during the titration process, which can be used to determine the endpoint of the titration. Conductometric titration is commonly used to determine the concentration of ions in a solution or to identify the equivalence point in acid-base titrations.


Why oxalic acid is used in conductometric titrations?

Oxalic acid is used in conductometric titrations because it is a strong electrolyte that dissociates completely in solution, leading to a sharp increase in conductivity at the equivalence point. This makes it easier to accurately determine the endpoint of the titration.


Advantages of conductometric titration over volumetric method?

Conductometric titration is advantageous over volumetric titration as it does not require a colour change indicator, making it suitable for titrating solutions that are not easily detectable by color change. It also allows for the detection of the endpoint precisely by monitoring the conductivity change in the solution, resulting in a more accurate determination of the equivalence point. Additionally, conductometric titration can be used to analyze non-aqueous solutions and solutions with low concentrations.


Application of conductometric titration.?

Conductometric titration is used in analytical chemistry to determine the endpoint of a titration by monitoring changes in electrical conductivity. It is commonly used to determine the concentration of ions in a solution, such as the determination of the calcium ion concentration in water or the acid content in a sample. Conductometric titration is also useful in studying complexation reactions and acid-base titrations.