cos(A + B) = cosAcosB - sinAsinB, with A=B, cos(2A) = cos2A - sin2A, then you can use cos2A + sin2A = 1, to produce more, like: [2cos2A - 1] or [1 - 2sin2A], and others.
Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta
It's 1/2 of sin(2 theta) .
4*cos2(theta) = 1 cos2(theta) = 1/4 cos(theta) = sqrt(1/4) = ±1/2 Now cos(theta) = 1/2 => theta = 60 + 360k or theta = 300 + 360k while Now cos(theta) = -1/2 => theta = 120 + 360k or theta = 240 + 360k where k is an integer.
(/) = theta sin 2(/) = 2sin(/)cos(/)
cos2(theta) = 1 so cos(theta) = ±1 cos(theta) = -1 => theta = pi cos(theta) = 1 => theta = 0
'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2
Remember that tan = sin/cos. So your expression is sin/cos times cos. That's sin(theta).
because sin(2x) = 2sin(x)cos(x)
cos2(theta) = 1 cos2(theta) + sin2(theta) = 1 so sin2(theta) = 0 cos(2*theta) = cos2(theta) - sin2(theta) = 1 - 0 = 1
(Sin theta + cos theta)^n= sin n theta + cos n theta
It is cotangent(theta).
1 cot(theta)=cos(theta)/sin(theta) cos(45 degrees)=sqrt(2)/2 AND sin(45 degrees)=sqrt(2)/2 cot(45 deg)=cos(45 deg)/sin(deg)=(sqrt(2)/2)/(sqrt(2)/2)=1
Zero. Anything minus itself is zero.
The question contains an expression but not an equation. An expression cannot be solved.
You can use the Pythagorean identity to solve this:(sin theta) squared + (cos theta) squared = 1.
The fourth Across the quadrants sin theta and cos theta vary: sin theta: + + - - cos theta: + - - + So for sin theta < 0, it's the third or fourth quadrant And for cos theta > 0 , it's the first or fourth quadrant. So for sin theta < 0 and cos theta > 0 it's the fourth quadrant
The half angle formula is: sin theta/2 = ± sqrt (1 - cos theta/2)
Verify the identity:1/(cos θ)^2 - (tan θ)^2 = (cos θ)^2 + 1/(csc θ)^21/(cos θ)^2 - (sin θ)^2/(cos θ)^2 = (cos θ)^2 + (sin θ)^2 ?1 - (sin θ)^2/(cos θ)^2 = (cos θ)^2 + (sin θ)^2 ?(cos θ)^2/(cos θ)^2 = 1 ?1 = 1 TrueMethod 21/(cos θ)2 - (tan θ)2 =? (cos θ)2 + 1/(cscθ)21/(cos θ)2-(sinθ)2/(cos θ)2=? (cosθ)2+ sin(θ)21/(cos θ)2[1-sin(θ)2]=? cos(θ)2+sin(θ)21/cos(θ)2(cos(θ)2)=? 11=1 True
cosine (90- theta) = sine (theta)
sine[theta]=opposite/hypotenuse=square root of (1-[cos[theta]]^2)
cosec(q)*cot(q)*cos(q) = 1/sin(q)*cot(q)*cos(q) = cot2(q)
For such simplifications, it is usually convenient to convert any trigonometric function that is not sine or cosine, into sine or cosine. In this case, you have: sin theta / sec theta = sin theta / (1/cos theta) = sin theta cos theta.
cos(t) - cos(t)*sin2(t) = cos(t)*[1 - sin2(t)] But [1 - sin2(t)] = cos2(t) So, the expression = cos(t)*cos2(t) = cos3(t)
The equation cannot be proved because of the scattered parts.
One relationship is: cos(x) = sin(90° - x) if you use degrees. Or in radians: cos(x) = sin(pi/2 - x) Another relationship is the pythagorean identity.
Asked By Wiki User
Asked By Ciara Parker
Asked By Wiki User
Asked By Wiki User
What is the timbre of the song dandansoy?
Asked By Wiki User
What is Hugh hefner penis size?
Asked By Wiki User
Is Duranice Pace husband dead?
Asked By Wiki User
Copyright ยฉ 2021 Multiply Media, LLC. All Rights Reserved. The material on this site can not be reproduced, distributed, transmitted, cached or otherwise used, except with prior written permission of Multiply.