The conductance of a given conductor, C = La/l ..(i)
\ L = l/Ra ..(ii)
The resistance is expressed in units of ohm, the conductance has units of ohm-1 or mho.
The conductance of solutions is also governed by the same relations. From (i), if l = 1,
a = 1, the specific conductance L = C. That is,
the specific conductance (L) is the conductance of the solution enclosed between two electrodes of 1 sq. cm area and 1 cm apart. when you dilute the solution the concentration decrease and the specific conductance also decrease
The conductance of a solution depends upon the number of ions present and hence on the concentration. To compare the conductivity of different solutions, it is necessary to take the concentration of the solutions into consideration. It is done by using equivalent
conductance, l.
Specific conductance is the conductance of a specified length of a substance, typically 1 cm, while equivalence conductance is the conductance of all ions produced by one mole of an electrolyte in solution. Specific conductance is a property of the substance itself, whereas equivalence conductance is a property of the electrolyte in solution.
Conductance can increase after the end point in conductometric titrations due to the presence of excess titrant in the solution, leading to higher conductivity. This excess titrant can contribute to the conductance of the solution and cause an increase in measured conductance. Factors such as incomplete reaction or side reactions can also contribute to the increase in conductance post-end point.
Conductance titration works on the principle of ohm's law. If we are to find the strength of a acid then we take that acid into a beaker and dip the electrode of conductometer into the acid solution. This measures the conductance of acid. Now, we titrate this acid solution against the base of known molarity, the conductance starts decreasing. This is due to the binding of H+ ions of acid with the OH- of Base until a point is reached where conductance is minimum. When we move forward the conductance starts increasing again. This is now due to the free ions of Base present in solution. The conductance produced by an ion is proportional to its concentration (at constant temperature),
In chemistry and biology, the dilution factor is the total number of unit volumes in which the material is dissolved. As I understand it, the dilution refers to the dilution ratio. If you add 1 part of something to 4 parts of something else, the dilution ratio is 1 to 4. The dilution factor counts all the parts and expresses the same thing as 1 out of 5.
To calculate concentration effectively using the dilution factor, you can multiply the initial concentration by the dilution factor. This will give you the final concentration after dilution. The formula is: Final concentration Initial concentration x Dilution factor.
the specific conductance of the electrolyte falls because of the no of current carring particles i.e. ions present per centimetercube of the soltion becomes less and less on dilution how ever increase in eqi bacause it is the product of specific conductance and rthe volume v of the sol contain 1 gm of eq electrolyte or one mole of the elecrtrolute that's why .............................................
dilution will reduce the viscosity The effect of dilution on viscosity of oil is that it will decrease.
Related link may help. Also, I think it's a sum of ionic contribution.
Specific conductance is the conductance of a specified length of a substance, typically 1 cm, while equivalence conductance is the conductance of all ions produced by one mole of an electrolyte in solution. Specific conductance is a property of the substance itself, whereas equivalence conductance is a property of the electrolyte in solution.
The conductance of a given conductor, C = La/l ..(i)\ L = l/Ra ..(ii)The resistance is expressed in units of ohm, the conductance has units of ohm-1 or mho.The conductance of solutions is also governed by the same relations. From (i), if l = 1,a = 1, the specific conductance L = C. That is,the specific conductance (L) is the conductance of the solution enclosed between two electrodes of 1 sq. cm area and 1 cm apart. when you dilute the solution the concentration decrease and the specific conductance also decreaseThe conductance of a solution depends upon the number of ions present and hence on the concentration. To compare the conductivity of different solutions, it is necessary to take the concentration of the solutions into consideration. It is done by using equivalentconductance, l.
Specific conductance is directly proportional to the concentration of electrolyte, while equivalent conductance is inversely proportional to the concentration of electrolyte. This is because specific conductance is the conductivity of a solution normalized to a unit concentration, while equivalent conductance is the conductivity of a solution containing one equivalent of the electrolyte.
If conductance decreases, the current flowing through the circuit will also decrease. Conductance is the inverse of resistance, so decreasing conductance means increasing resistance, which impedes the flow of current.
No it will have high conductance
Corrected conductance is calculated to account for the impact of temperature on the conductance of a substance. Conductance is temperature-dependent, so correcting for this allows for a more accurate comparison of values across different temperatures. It helps to standardize conductance measurements and make them more reliable for analysis.
Conductance is ignored in short circuit studies because the inductance of the line is the dominant value. Conductance may not be ignored in stability studies.
The conductance of a wire is the reciprocal of its resistance. Therefore, for a wire with a resistance of 400 ohms, the conductance would be 1/400 siemens, or 0.0025 siemens.
Conductance can increase after the end point in conductometric titrations due to the presence of excess titrant in the solution, leading to higher conductivity. This excess titrant can contribute to the conductance of the solution and cause an increase in measured conductance. Factors such as incomplete reaction or side reactions can also contribute to the increase in conductance post-end point.