answersLogoWhite

0

What is idometric titration?

Updated: 9/16/2023
User Avatar

Wiki User

14y ago

Best Answer

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

Iodometry is one of the most important redox titration methods. Iodine reacts directly, fast and quantitively with many organic and inorganic substances. Thanks to its relatively low, pH independent redox potential, and reversibility of the iodine/iodide reaction, iodometry can be used both to determine amount of reducing agents (by direct titration with iodine) and of oxidizing agents (by titration of iodine with thiosulfate). In all cases the same simple and reliable method of end point detection, based on blue starch complex, can be used.

Reversible iodine/iodide reaction mentioned above is

2I- ↔ I2 + 2e-

and obviously whether it should be treated as oxidation with iodine or reduction with iodides depends on the other redox system involved.

Second important reaction used excesivelly in iodometry is reduction of iodine with thiosulfate:

2S2O32- + I2 → S4O62- + 2I-

In the case of both reactions it is better to avoid low pH. Thiosulfate is unstable in the presence of acids, and iodides in low pH can be oxidized by air oxygen to iodine. Both processes can be source of titration errors.

Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides iodine creates I3- ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab practice. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). Iodine solutions are prepared dissolving elemental iodine directly in the iodides solution. Elemental iodine can be prepared very pure through sublimation, but because of its high volatility it is difficult to weight. Thus use of iodine as a standard substance, although possible, is not easy nor recommended. Iodine solutions can be easily normalized against arsenic (III) oxide (As2O3) or sodium thiosulfate solution.

It is also possible to prepare iodine solutions mixing potassium iodide with potassium iodate in the presence of strong acid:

5I- + IO3- + 6H+ → 3I2 + 3H2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.2O

Potassium iodate is a primary substance, so solution prepared this way can have exactly known concentration. However, this approach is not cost effective and in lab practice it is much better to use iodate as a primary substance to standardize thiosulfate, and then standardize iodine solution against thiosulfate.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is idometric titration?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What are the methods of determining chemical ions in water?

Using a indicator known as chlorotex reagent (applicable for free chlorine in a range of 0 - 1 ppm. Idometric titration for higher range of free chlorine


What are the type of conductometric titration?

types of conductometric titration: acid base titration complexometric titration replacement titration redox titration precipitation titration


What are complexometric titration method?

Direct titration, Indirect titration, back titration, replacement titration and so on


What is over-titration?

over titration is when too much titrant is added to the analyte in a titration procedure.


Which type of the analysis the titration is?

Titration is a method of chemical analysis; for example: - volumetry - potentiometric titration - amperometric titration - radiometric titration - Karl Fisher titration - spectrophotometric titaration - viscosimetric titration and other methods


How many tipes of titration?

There are various types of titration. It is dependent on the conditions used and the reactants and desired products. Some of them are acid-base titration, redox titration, colorimetric titration and thermometric titration.


What is titration formula?

It depends on the titration.


Define the analyte in a titration?

1) The analyte is the substance in a titration whose concentration is unknown.


What is the endpoint of a titration?

during a titration when a titrant completely furnished the sample then this is the end point of titration.


What is double titration?

Double titration is a process were the first titration is used to standardize a titrant and the second titration is used to find the molarity of the unknow solution.


Is titration a chemical change?

Titration is a chemical process.


What equipment is used for titration in industry?

titration sensors