An output force is the force that is exerted from the input force to create motion of the resisting object.
the input force can be less or more then the output force
The formula for work exerted by each simple machine is: Lever: Work = Input force × Input distance = Output force × Output distance Inclined plane: Work = Input force × Input distance = Output force × Output distance Pulley: Work = Input force × Input distance = Output force × Output distance Wheel and axle: Work = Input force × Input radius = Output force × Output radius Wedge: Work = Input force × Input distance = Output force × Output distance Screw: Work = Input force × Input distance = Output force × Output distance
Input and output are shown on a force diagram by the human being the input force and the load force being the output force. When you divide output force by input force, you get the mechanical advantage of a lever.
An output force is the force that is exerted from the input force to create motion of the resisting object. the input force can be less or more then the output force
The difference between and input force and an output force is that an output force is force exerted by a machine, and an input force is force exerted on a machine.
To calculate input force, divide the output force by the mechanical advantage of the machine or system. Input force = Output force / Mechanical advantage. The output force is the force exerted by the machine, while the input force is the force applied to the machine.
Just divide the output force by the input force.Just divide the output force by the input force.Just divide the output force by the input force.Just divide the output force by the input force.
Mechanical Advantage which is the output force divided by the input force.
The mechanical advantage (MA) is calculated as the ratio of the output force to the input force, or the distance the input force acts over compared to the distance the output force moves. The formula for mechanical advantage is MA = output force / input force = input distance / output distance.
Input force is the force applied to an object, while output force is the force exerted by the object in response. In a simple machine, the input force is the force applied to it, and the output force is the force produced by the machine to do work. The relationship between input and output forces determines the efficiency of a machine.
The ratio of output force to input force is known as mechanical advantage. It represents how much a machine multiplies the input force to produce the output force.
No, a machine's mechanical advantage is the ratio of the output force to the input force. It indicates how much a machine multiplies the input force to produce the output force. The formula for mechanical advantage is output force divided by input force.
The input force is the force applied to the pulley by the person or machine. The output force is the force exerted by the pulley to move the load. The output force is typically higher than the input force due to mechanical advantage.