ELECTRIC FIELD The electric of a charge is the region of space surrounding in which a point charge can experience its influence in the form of a force The regon around any charged body in which coloumb's force is experienced by some other charged body is called "electric field" of the first body.
No, two electric field lines cannot originate from the same point because the electric field direction at that point would be ambiguous. Electric field lines always point in the direction of the electric field at a given point and represent the direction a positive test charge would move in that field.
Total normal electric induction over a surface refers to the total electric flux passing through the surface when the electric field is perpendicular to the surface. It is a measure of the total electric field passing through the surface and is calculated by the dot product of the electric field and the surface area vector.
When we say that the potential difference (pd) between two points is 1 volt, it means that 1 joule of energy is required to move 1 coulomb of electric charge from one point to the other. This measurement indicates the strength of the electric field between those points and represents the work done per unit charge. A higher potential difference signifies a stronger electric field and greater energy available for moving charges.
An electric field can be represented diagrammatically as a set of lines with arrows on, called electric field-lines, which fill space. Electric field-lines are drawn according to the following rules: The direction of the electric field is everywhere tangent to the field-lines, in the sense of the arrows on the lines. The magnitude of the field is proportional to the number of field-lines per unit area passing through a small surface normal to the lines. Thus, field-lines determine the magnitude, as well as the direction, of the electric field. In particular, the field is strong at points where the field-lines are closely spaced, and weak at points where they are far apart. Electric Field intensity It was stated that the electric field concept arose in an effort to explain action-at-a-distance forces. All charged objects create an electric field which extends outward into the space which surrounds it. The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object. In this section of Lesson 4, we will investigate electric field from a numerical viewpoint - the electric field strength. An electric field can be represented diagrammatically as a set of lines with arrows on, called electric field-lines, which fill space. Electric field-lines are drawn according to the following rules: The direction of the electric field is everywhere tangent to the field-lines, in the sense of the arrows on the lines. The magnitude of the field is proportional to the number of field-lines per unit area passing through a small surface normal to the lines. Thus, field-lines determine the magnitude, as well as the direction, of the electric field. In particular, the field is strong at points where the field-lines are closely spaced, and weak at points where they are far apart. Electric Field intensity It was stated that the electric field concept arose in an effort to explain action-at-a-distance forces. All charged objects create an electric field which extends outward into the space which surrounds it. The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object. In this section of Lesson 4, we will investigate electric field from a numerical viewpoint - the electric field strength.
Saying that the potential difference between two points is 1 volt means that one joule of energy is required to move one coulomb of charge from one point to the other against the electric field.
There is no such thing as an "electric currant." Maybe you meant "electric current," which is the flow of electric charge through a conductor.
No they are caused by changes in magnetic and electrical fields. When a magnetic field changes it causes an electric field that is perpendicular to it. And vice versa a changing electric field causes a perpendicular magnetic field. These changing fields propagate outwards at the speed of light and are what is meant by an electromagnetic wave.
The ground in an electric circuit is the brown copper wire.
Usually refers to the power company and means that no power is available. Hence electric lights don't operate so you have a black out condition, especially at night.
A magnetic field is a area in which magnetic objects are pushed or pulled. It is caused by the alignment of parts of atoms.A field of force associated with changing electric fields , as when electric charges are in motion. Magnetic fields exert deflective forces on moving electric charges. Most magnets have magnetic fields as a result of the spinning motion of the electrons orbiting the atoms of which they are composed; electromagnets create such fields from electric current moving through coils. Large objects, such as the earth, other planets, and stars, also produce magnetic fields. See Note at magnetism.
Yes, it is illegal to sell license plates because they are government-issued items that are not meant to be bought or sold.
Orthogonal directions of polarization refer to two perpendicular directions in which an electromagnetic wave's electric field oscillates. In these directions, the electric fields are independent of each other and can be represented as perpendicular vectors. This property is commonly seen in linearly polarized light.