ideal ammeter has zero internal resistance
An ideal ammeter is a device that measures electric current and has zero resistance, producing no voltage drop when connected in a circuit. This ensures that the current being measured is not affected by the presence of the ammeter itself, providing an accurate reading of the current flowing through the circuit.
0. An ammeter is placed in series with the circuit in question; if its' internal resistance is high, it will change the current flow, thus making the measurement meaningless. For the same reason an ideal voltage meter will have infinite resistance.
An ammeter with a large resistance will affect the circuit that it is trying to measure. The ideal ammeter (or any measuring tool) should not affect what is being measured.
infinity- so that all the voltage is measured across the component instead of losing some in voltometer circuitry
An ammeter does not have an 'output resistance'. It's important that its resistance is low so as not to add additional resistance into the circuit to which it is connected, otherwise the 'measured current' would be lower than the actual current.
an ideal ammeter has zero or negligible resistance when this is connected in series no effective resistance would be added in the circuit so that the value of curret that we get is exactly of the circuit only. but when the ammeter is connected in parllel as it has zero resistance , the resistor to which it is connected in parllel gets shorted and due to his the effective resistance of the circuit is changed and so the effective current ... due to this the w=value measured by the ammeter would be different (incresed due to dec. in effective resistance)
if we take resistance in parallel with ammeter then the range of ammeter will change.
Maybe blow the fuse or burn out the wiring. An ammeter has an extremely low resistance. connecting it across the resistance causes the resulting parallel resistance to be slightly lower than the resistance of the ammeter 1/Rt = 1/R + 1/R(ammeter)
An ammeter has a finite resistance which is inserted in series with the rest of the circuit, increasing the total resistance and decreasing the current. A good ammeter has a very low resistance, so it shouldn't affect the circuit noticeably.
The internal resistance of an ammeter is very low. This is necessary in order to minimize the impact of the ammeter on the circuit being measured, ensuring accurate readings of the current flowing through the circuit.
Resistance of the load = voltage across the load/current through the loadWhich means that the resistance would be 3 ohms.(This is only true assuming that the load is purely resistive and the ammeter is ideal.)
An ammeter has to measure to current flowing through the circuit. Resistance offers an obstruction to the current flow. So, if the resistance of an ammeter is large , the current measured by the ammeter will be quite less as compared to the actual amount of current flowing through the circuit which is undesirable. If ammeter has zero resistance , then it will give the exact value of current. But this is not practically possible because every material has some value of internal resistance which we can't control. For this reason , ammeter must have small resistance