There are 42+5+1 valence electrons = 48
6 initial bonds, leaving 36 more electrons to distribute. These go around the F atoms.
so P as the central atom, and 6 single bonded F atoms around it. Structure is octahedral.
The bond angle of TeF6 is 90 degrees. This is because TeF6 adopts an octahedral geometry with the six fluorine atoms surrounding the central tellurium atom. Each fluorine atom occupies one of the six vertices of an octahedron, resulting in bond angles of 90 degrees between adjacent fluorine atoms.
Resonance structure.
The Lewis dot structure for germanium (Ge) is: Ge: :Ge:
The Lewis structure of the compound CCLO is as follows: CCCl-O.
The formal charge of the NCO Lewis structure is zero.
octahedral
Octahedral
The bond angle of TeF6 is 90 degrees. This is because TeF6 adopts an octahedral geometry with the six fluorine atoms surrounding the central tellurium atom. Each fluorine atom occupies one of the six vertices of an octahedron, resulting in bond angles of 90 degrees between adjacent fluorine atoms.
Resonance structure.
No its not polar
The Lewis dot structure for germanium (Ge) is: Ge: :Ge:
The Lewis structure of the compound CCLO is as follows: CCCl-O.
The formal charge of the NCO Lewis structure is zero.
No, not exactly. It is an ionic compound so it would not have a Lewis dot structure. However, the carbonate anion, CO3^2- does have a Lewis dot structure.
The molecular geometry of the BR3 Lewis structure is trigonal planar.
The Lewis structure was created by American chemist Gilbert N. Lewis in 1916. Lewis proposed using dots to represent the valence electrons of an atom in order to show how atoms bond together in molecules.
Sulfur can form a maximum of six bonds in a Lewis structure.