
Previous Article
Bifurcations of a nongeneric heteroclinic loop with nonhyperbolic equilibria
 DCDSB Home
 This Issue

Next Article
Slow passage through multiple bifurcation points
Stability results for a sizestructured population model with delayed birth process
1.  Department of Mathematics, East China Normal University, Shanghai, 200241, China, China 
References:
[1] 
D. M. Auslander, G. F. Oster and C. B. Huffaker, Dynamics of interacting populations, J. Franklin Inst., 297 (1974), 345376. Google Scholar 
[2] 
G. Di Blasio, Nonlinear agedependent population growth with historydependent birth rate, Math. Biosci., 46 (1979), 279291. Google Scholar 
[3] 
O. Diekmann, Ph. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2007), 10231096. Google Scholar 
[4] 
O. Diekmann and M. Gyllenberg, Abstract delay equations inspired by population dynamics, Fun. Anal. Evol. Eq., 47 (2008), 187200. Google Scholar 
[5] 
K. J. Engel, Operator matrices and systems of evolution equations, RIMS Kokyuroku, 966 (1996), 6180. Google Scholar 
[6] 
K. J. Engel and R. Nagel, "OneParameter Semigroups for Linear Evolution Equations," Springer, New York, 2000. Google Scholar 
[7] 
M. Farkas, On the stability of stationary age distributions, Appl. Math. Comp., 131 (2002), 107123. Google Scholar 
[8] 
J. Z. Farkas, Stability conditions for a nonlinear size structured model, Nonl. Anal. (RWA), 6 (2005), 962969. Google Scholar 
[9] 
J. Z. Farkas and T. Hagen, Stability and regularity results for a sizestructured population model, J. Math. Anal. Appl., 328 (2007), 119136. Google Scholar 
[10] 
J. Z. Farkas and T. Hagen, Linear stability and positivity results for a generalized sizestructured Daphnia model with inflow, Appl. Anal., 86 (2007), 10871103. Google Scholar 
[11] 
J. Z. Farkas and T. Hagen, Asymptotic behavior of sizestructured populations via juvenileadult interaction, Discr. Cont. Dyn. Syst. B, 9 (2008), 249266. Google Scholar 
[12] 
G. Fragnelli, A. Idrissi and L. Maniar, The asymptotic behavior of a population equation with diffusion and delayed birth process, Discr. Cont. Dyn. Syst. B, 7 (2007), 735754. Google Scholar 
[13] 
G. Greiner, A typical PerronFrobenius theorem with applications to an agedependent population equation, Lect. Notes in Math., 1076 (1984), 86100. Google Scholar 
[14] 
G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213229. Google Scholar 
[15] 
B. Guo and W. Chan, A semigroup approach to age dependent population dynamics with time delay, Comm. PDEs, 14 (1989), 809832. Google Scholar 
[16] 
T. Hagen, Eigenvalue asymptotics in isothermal forced elongation, J. Math. Anal. Appl., 224 (2000), 393407. Google Scholar 
[17] 
T. Hagen and M. Renardy, Eigenvalue asymptotics in nonisothermal elongational flow, J. Math. Anal. Appl., 252 (2000), 431443. Google Scholar 
[18] 
T. Hagen and M. Renardy, Studies on the linear equations of meltspinning of viscous fluids, Diff. Int. Equ., 14 2001, 1936. Google Scholar 
[19] 
M. Iannelli, "Mathematical Theory of Agestructured Population Dynamics," Giardini Editori, Pisa, 1994. Google Scholar 
[20] 
Y. Liu and Z.R. He, Stability results for a sizestructured population model with resourcesdependence and inflow, J. Math. Anal. Appl., 360 (2009), 665675. Google Scholar 
[21] 
A. J. Metz and O. Diekmann, "The Dynamics of Psyiologically Structured Populations," Springer, Berlin, 1986. Google Scholar 
[22] 
R. Nagel, The spectrum of unbounded operator matrices with nondiagonal domain, J. Funct. Anal., 89 (1990), 291302. Google Scholar 
[23] 
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer, New York, 1983. Google Scholar 
[24] 
S. Pizzera, An age dependent population equation with delayed birth press, Math. Meth. Appl. Sci., 27 (2004), 427439. Google Scholar 
[25] 
S. Pizzera and L. Tonetto, Asynchronous exponential growth for an age dependent population equation with delayed birth process, J. Evol. Equ., 5 (2005), 6177. Google Scholar 
[26] 
J. W. Sinko and W. Streifer, A new model for agesize structure of a population, Ecology, 48 (1967), 910918. Google Scholar 
[27] 
K. E. Swick, A nonlinear agedependent model of single species population dynamics, SIAM J. Appl. Math., 32 (1977), 484498. Google Scholar 
[28] 
K. E. Swick, Periodic solutions of a nonlinear agedependent model of single species population dynamics, SIAM J. Math. Anal., 11 (1980), 901910. Google Scholar 
[29] 
G. F. Webb, "Theory of Nonlinear Agedependent Population Dynamics," Marcell Dekker, New York, 1985. Google Scholar 
show all references
References:
[1] 
D. M. Auslander, G. F. Oster and C. B. Huffaker, Dynamics of interacting populations, J. Franklin Inst., 297 (1974), 345376. Google Scholar 
[2] 
G. Di Blasio, Nonlinear agedependent population growth with historydependent birth rate, Math. Biosci., 46 (1979), 279291. Google Scholar 
[3] 
O. Diekmann, Ph. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2007), 10231096. Google Scholar 
[4] 
O. Diekmann and M. Gyllenberg, Abstract delay equations inspired by population dynamics, Fun. Anal. Evol. Eq., 47 (2008), 187200. Google Scholar 
[5] 
K. J. Engel, Operator matrices and systems of evolution equations, RIMS Kokyuroku, 966 (1996), 6180. Google Scholar 
[6] 
K. J. Engel and R. Nagel, "OneParameter Semigroups for Linear Evolution Equations," Springer, New York, 2000. Google Scholar 
[7] 
M. Farkas, On the stability of stationary age distributions, Appl. Math. Comp., 131 (2002), 107123. Google Scholar 
[8] 
J. Z. Farkas, Stability conditions for a nonlinear size structured model, Nonl. Anal. (RWA), 6 (2005), 962969. Google Scholar 
[9] 
J. Z. Farkas and T. Hagen, Stability and regularity results for a sizestructured population model, J. Math. Anal. Appl., 328 (2007), 119136. Google Scholar 
[10] 
J. Z. Farkas and T. Hagen, Linear stability and positivity results for a generalized sizestructured Daphnia model with inflow, Appl. Anal., 86 (2007), 10871103. Google Scholar 
[11] 
J. Z. Farkas and T. Hagen, Asymptotic behavior of sizestructured populations via juvenileadult interaction, Discr. Cont. Dyn. Syst. B, 9 (2008), 249266. Google Scholar 
[12] 
G. Fragnelli, A. Idrissi and L. Maniar, The asymptotic behavior of a population equation with diffusion and delayed birth process, Discr. Cont. Dyn. Syst. B, 7 (2007), 735754. Google Scholar 
[13] 
G. Greiner, A typical PerronFrobenius theorem with applications to an agedependent population equation, Lect. Notes in Math., 1076 (1984), 86100. Google Scholar 
[14] 
G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213229. Google Scholar 
[15] 
B. Guo and W. Chan, A semigroup approach to age dependent population dynamics with time delay, Comm. PDEs, 14 (1989), 809832. Google Scholar 
[16] 
T. Hagen, Eigenvalue asymptotics in isothermal forced elongation, J. Math. Anal. Appl., 224 (2000), 393407. Google Scholar 
[17] 
T. Hagen and M. Renardy, Eigenvalue asymptotics in nonisothermal elongational flow, J. Math. Anal. Appl., 252 (2000), 431443. Google Scholar 
[18] 
T. Hagen and M. Renardy, Studies on the linear equations of meltspinning of viscous fluids, Diff. Int. Equ., 14 2001, 1936. Google Scholar 
[19] 
M. Iannelli, "Mathematical Theory of Agestructured Population Dynamics," Giardini Editori, Pisa, 1994. Google Scholar 
[20] 
Y. Liu and Z.R. He, Stability results for a sizestructured population model with resourcesdependence and inflow, J. Math. Anal. Appl., 360 (2009), 665675. Google Scholar 
[21] 
A. J. Metz and O. Diekmann, "The Dynamics of Psyiologically Structured Populations," Springer, Berlin, 1986. Google Scholar 
[22] 
R. Nagel, The spectrum of unbounded operator matrices with nondiagonal domain, J. Funct. Anal., 89 (1990), 291302. Google Scholar 
[23] 
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer, New York, 1983. Google Scholar 
[24] 
S. Pizzera, An age dependent population equation with delayed birth press, Math. Meth. Appl. Sci., 27 (2004), 427439. Google Scholar 
[25] 
S. Pizzera and L. Tonetto, Asynchronous exponential growth for an age dependent population equation with delayed birth process, J. Evol. Equ., 5 (2005), 6177. Google Scholar 
[26] 
J. W. Sinko and W. Streifer, A new model for agesize structure of a population, Ecology, 48 (1967), 910918. Google Scholar 
[27] 
K. E. Swick, A nonlinear agedependent model of single species population dynamics, SIAM J. Appl. Math., 32 (1977), 484498. Google Scholar 
[28] 
K. E. Swick, Periodic solutions of a nonlinear agedependent model of single species population dynamics, SIAM J. Math. Anal., 11 (1980), 901910. Google Scholar 
[29] 
G. F. Webb, "Theory of Nonlinear Agedependent Population Dynamics," Marcell Dekker, New York, 1985. Google Scholar 
[1] 
Xianlong Fu, Dongmei Zhu. Stability analysis for a sizestructured juvenileadult population model. Discrete & Continuous Dynamical Systems  B, 2014, 19 (2) : 391417. doi: 10.3934/dcdsb.2014.19.391 
[2] 
Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and sizestructured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637655. doi: 10.3934/cpaa.2016.15.637 
[3] 
Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a sizestructured cannibalism population model with delayed birth process. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 19751998. doi: 10.3934/dcdsb.2016032 
[4] 
Dongxue Yan, Xianlong Fu. Longtime behavior of a sizestructured population model with diffusion and delayed birth process. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021030 
[5] 
Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical sizestructured population model. Evolution Equations & Control Theory, 2018, 7 (2) : 293316. doi: 10.3934/eect.2018015 
[6] 
Yunfei Lv, Yongzhen Pei, Rong Yuan. On a nonlinear sizestructured population model. Discrete & Continuous Dynamical Systems  B, 2020, 25 (8) : 31113133. doi: 10.3934/dcdsb.2020053 
[7] 
Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a sizestructured population model. Discrete & Continuous Dynamical Systems  B, 2017, 22 (3) : 831840. doi: 10.3934/dcdsb.2017041 
[8] 
YuXia Liang, ZeHua Zhou. Supercyclic translation $C_0$semigroup on complex sectors. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 361370. doi: 10.3934/dcds.2016.36.361 
[9] 
Mustapha MokhtarKharroubi, Quentin Richard. Spectral theory and time asymptotics of sizestructured twophase population models. Discrete & Continuous Dynamical Systems  B, 2020, 25 (8) : 29693004. doi: 10.3934/dcdsb.2020048 
[10] 
Qihua Huang, Hao Wang. A toxinmediated sizestructured population model: Finite difference approximation and wellposedness. Mathematical Biosciences & Engineering, 2016, 13 (4) : 697722. doi: 10.3934/mbe.2016015 
[11] 
Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measurevalued solutions of a hierarchically sizestructured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233258. doi: 10.3934/mbe.2015.12.233 
[12] 
L. M. Abia, O. Angulo, J.C. LópezMarcos. Sizestructured population dynamics models and their numerical solutions. Discrete & Continuous Dynamical Systems  B, 2004, 4 (4) : 12031222. doi: 10.3934/dcdsb.2004.4.1203 
[13] 
József Z. Farkas, Thomas Hagen. Asymptotic analysis of a sizestructured cannibalism model with infinite dimensional environmental feedback. Communications on Pure & Applied Analysis, 2009, 8 (6) : 18251839. doi: 10.3934/cpaa.2009.8.1825 
[14] 
Jiří Neustupa. On $L^2$Boundedness of a $C_0$Semigroup generated by the perturbed oseentype operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758767. doi: 10.3934/proc.2007.2007.758 
[15] 
Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 577587. doi: 10.3934/dcds.2008.20.577 
[16] 
H. L. Smith, X. Q. Zhao. Competitive exclusion in a discretetime, sizestructured chemostat model. Discrete & Continuous Dynamical Systems  B, 2001, 1 (2) : 183191. doi: 10.3934/dcdsb.2001.1.183 
[17] 
Jixun Chu, Pierre Magal. Hopf bifurcation for a sizestructured model with resting phase. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 48914921. doi: 10.3934/dcds.2013.33.4891 
[18] 
Blaise Faugeras, Olivier Maury. An advectiondiffusionreaction sizestructured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719741. doi: 10.3934/mbe.2005.2.719 
[19] 
José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$semigroups on complex sectors. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 11951208. doi: 10.3934/dcds.2009.25.1195 
[20] 
Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discretetime sizestructured chemostat model with inhibitory kinetics. Discrete & Continuous Dynamical Systems  B, 2019, 24 (7) : 34393451. doi: 10.3934/dcdsb.2018327 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]