Much of the surface of each of the approximately 300 million alveoli in a human lung is a layer of simple epithelial tissue on a fine mesh of capillaries. Forming a membrane only the thickness of one cell, simple epithelium allows the passage of gases between the lungs and the capillaries.
Destruction of alveoli reduces the surface area for gas exchange
False
Lungs are made up of millions of alveoli to maximize surface area for gas exchange. Alveoli are tiny, balloon-like structures that facilitate the diffusion of oxygen into the bloodstream and the removal of carbon dioxide. This large surface area, combined with their thin walls, allows for efficient oxygen uptake and carbon dioxide release, which is essential for effective respiration. The vast number of alveoli ensures that the lungs can meet the body’s oxygen demands during various activities.
surfactant
The Alveoli
The Alveoli
Alveoli are found within the lungs. The alveoli act as a specialised gaseous exchange surface in mammals. Another function of alveoli is the production of surfactant.
Surfactant is the soaplike substance that coats the inner surface of the alveoli. It is composed of phospholipids and proteins and helps to reduce the surface tension within the alveoli, preventing their collapse and aiding in the process of gas exchange in the lungs.
The wet surfaces of the alveoli stick together primarily due to surface tension, which is the tendency of liquid surfaces to shrink and minimize their area. This surface tension is caused by the cohesive forces between water molecules lining the alveoli. To counteract this, the alveoli produce a substance called surfactant, which reduces surface tension and prevents the alveoli from collapsing, allowing for efficient gas exchange during respiration.
Alveoli are similar to cells in the sense that they have a large surface area to volume ratio. This is advantageous since they depend on there surface to allow as much oxygen as possible to diffuse through. Therefore, the correct answer would be something like this : Since alveoli's have a large surface area to volume ratio, it oxygen to diffuse through. More oxygen can be absorbed. If the alveoli had a smaller surface area to volume ratio, it would be very difficult for oxygen to diffuse through. Therefore, it is advantageous for the alveoli to be small in volume, but great in surface area.
Alveoli are similar to cells in the sense that they have a large surface area to volume ratio. This is advantageous since they depend on there surface to allow as much oxygen as possible to diffuse through. Therefore, the correct answer would be something like this : Since alveoli's have a large surface area to volume ratio, it oxygen to diffuse through. More oxygen can be absorbed. If the alveoli had a smaller surface area to volume ratio, it would be very difficult for oxygen to diffuse through. Therefore, it is advantageous for the alveoli to be small in volume, but great in surface area.
Alveoli are similar to cells in the sense that they have a large surface area to volume ratio. This is advantageous since they depend on there surface to allow as much oxygen as possible to diffuse through. Therefore, the correct answer would be something like this : Since alveoli's have a large surface area to volume ratio, it oxygen to diffuse through. More oxygen can be absorbed. If the alveoli had a smaller surface area to volume ratio, it would be very difficult for oxygen to diffuse through. Therefore, it is advantageous for the alveoli to be small in volume, but great in surface area.