answersLogoWhite

0


Best Answer

14000$ a mnth for an indian chief engineer

User Avatar

Wiki User

11y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

12y ago

12.000$ to 14.000$/month

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the average salary of chief engineer on oil tanker?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Chemical Engineering

Petroleum Engineer?

Petroleum engineering is the engineering specialty that is focused on locating and extracting sources of petroleum. These engineers often work with specialists such as geologists and hydrologists to determine the best, most cost effective method to remove petroleum sources from the earth. The chief responsibility of a petroleum engineer is to select and supervise the method by which petroleum sources are to be extracted. However, the job is not nearly that simple, there are several factors that impact the engineer’s decisions. The first factor that petroleum engineers consider when drilling is the depth at which the reservoir is located as different drilling methods are to be used at varying depths. From there, the engineer must test the reservoir to determine its size and level of connectivity. In some cases it is possible to remove petroleum from multiple reservoirs through complex drilling and a process known as fracturing. The last, and often most important, decision made by a petroleum engineers involves the pressure and other environmental factors that allow petroleum to naturally flow to the surface of a well. Petroleum engineers have employed a variety of methods to remove as much petroleum as possible from a well; examples would be injecting steam and water into the reservoir. The minimum requirements to become a Petroleum Engineer are to earn a bachelor’s degree in petroleum engineering; however, it is very possible to cross over from another engineering specialty such as chemical or mechanical engineering. It is a very good idea for students interested in petroleum engineering to secure an internship during college to gain highly valuable work experience. Graduate degrees are necessary for many research and development positions. The employment opportunities in petroleum engineering are expected to be very good. There is to be an 18% growth over the next decade according to www.bls.gov ; in addition, there are too few graduates with degrees in petroleum engineering to fill the positions. Petroleum engineers are the most highly paid of the engineering specialties; starting salaries for a petroleum engineer are typically around $83,000, one of the highest for any bachelor’s level program. On average, workers in the field earn from $100,000 to $110,000.


Why you use boiler in oil refinery?

Use of water in a refinery is makeup for boiler feed. The chief uses of steam are for stripping, steam distillation, and vacuum distillation. The steam comes in contact with the products in these operations, and generally the steam condensate is so highly contaminated that it cannot be reused for boiler feed or for other purposes. Steam is also used for process heating, for pumping, and, in some refineries, for generating electric power


How do you become a nuclear engineer?

You have to know stuff. You have to be smart and know things. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you. Nuclear power is an important part of the current energy balance. With advances in science and technology, nuclear energy is ever more regarded as an eminent part of the global energy-environment equation needed to satisfy growing demands for energy in a rapidly developing world. Undoubtedly nuclear energy, as well as other non-energy applications of nuclear science and technology, will continue and further increase their important role in serving society. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In view of the ever more urgent environmental concerns related to power production using fossil fuels, it is clear that nuclear technology will play important role in future sustainable energy systems. The ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems, and are also crucial for how successfully we can handle the nuclear waste problem in a responsible manner. From this perspective, it is of vital importance to offer high quality education to the next generation of nuclear scientists and engineers. If you want to know how much it pays keep reading. The median salaries annual earnings of mining and physical engineers, including drawing out safety engineers, were $61,770 in 2002. The middle 50 percent earned between $48,250 and $77,160. The lowest 10 percent earned less than $36,720, and the highest 10 percent earned more than $93,660. A nuclear engineer makes about 60,000 a year but really it depends on where you live, if you live in Florida you earn up to a 120,000 a year. The MIT Nuclear Engineering Department (NED) is the premier US department in its field. This number-one ranking by U.S. News World Report and over many years has reflected the quality of scholarship by students and faculty in the department. Our educational activities have been highly productive this year. Graduate applications were at a 12-year high, with a strong entering class. Undergraduate enrollment also sustained its upward trend. Freshman elections to major nuclear engineering increased by 60%. In addition, the department took responsibility for several Institute-wide undergraduate courses, and individual faculty members contributed to teaching large undergraduate courses in electrical engineering and computer science and materials science and engineering. Research has remained dynamic, with substantial growth in research volume in fission, fusion, and radiation science and technology. The department led a process of envisioning the role of the MIT Nuclear Reactor and presented our vision of a national center in support of next-generation reactor research to the Department of Energy (DOE), where it was very positively received. Nuclear Engineering faculty and students represent the majority of the educational component of the Plasma Science and Fusion Center. The graduate student component of the Allocator Program was recognized for its high importance, both because of the students' contribution to research and as a source of highly skilled young scientists. Most companies have a career progression. They may hire a young man just out of college and he will have a Title. As he gets more experience, he will be promoted to a new title with a raise in pay. Here is how some companies rank their engineering staff. · Associate Engineer - maybe a temporary college student * Engineer - graduate of college * Senior Engineer - Experienced engineer * Project Engineer - Experience allows him to work a project without any supervision * Standards Engineer or Lead Engineer - has responsibility for the technical documents prepared by other engineers * Chief Engineer - Engineer of highest technical experience in his company or department. Probably has a Masters or for aircraft design a FAA D.E.R. license. * Many engineers gain experience and are promoted into Management. They can manage an engineering department or manage a project. That is considered moving out of the technical field into a field requiring management skills or education such as an MBA. The research efforts of the Center for Advanced Nuclear Energy Systems (CANES) were organized into the following four programs: Advanced Reactor Technology; Nuclear Fuel Cycle Technology and Economics; Enhanced Performance of Nuclear Power Plants; and Nuclear Energy and Sustainability. The center signed a three-year agreement with the Nuclear Regulatory Commission centered on Advanced Reactor Technology for $500,000 per year. The focus of that work will be on fuel and safety analysis of gas-cooled, high-temperature reactors, high-burn up light water reactor (LWR) fuel and risk-informing the regulation of advanced reactors. The first contracts from the newly established DOE program on Generation IV reactors were two signed by Professor Driscoll as the principal investigator. They address the development of materials testing and plant design of innovative CO2-cooled fast reactors. Professor Tories and Czerwinski started new projects supported by the Nuclear Energy Research Initiative Program (NERI). Two new projects were initiated with support from TEPCO: Professor Golan's investigation of seismic risk and Professor Kodak and Kasogi's investigation of the comparative performance of nuclear energy plants in the United States and Japan. Professor Kashmir, with support from Toshiba, initiated research on the design of boiling-water reactors that can operate for very long cycles (about 10 years) without refueling. Short reports on a few ongoing research projects are given below. Educational seminars were organized under the auspices of the Center for Advanced Nuclear Energy Systems. A two-day seminar on "Advanced Reactors" was organized by Professor Tories in Beijing in January, jointly with the Institute of Nuclear Energy Technology of Tsinghai University. Professor Kashmir convened a one-day colloquium on "High Burn up LWR Fuel" at MIT in January 2003. Both professors were among the organizers of a one-day symposium on "Advances in Heat Transfer" at MIT in May. In June they co directed the 38th session of the two-week summer course on Nuclear Systems Safety. This was followed with the one-week course on "Risk Informed Operations of Nuclear Power Plants," directed by Professor Apostolicism. Also in June, Professor Goalie organized the 11th session of the four-week Reactor Technology Course for utility executives. Preparation A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science, chemistry, or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, chemical, civil, or materials engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and science. Most programs include a design course, sometimes accompanied by a computer or laboratory class or both. A degree in Nuclear Engineering might include the following types of courses: engineering fundamentals in radiation production, interactions and measurement, design of nuclear systems, thermal-fluid engineering, electronics, and computer methods. * Hazardous material protective apparel - Ant contamination clothing * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear reactor control rod systems - Reactivity computer systems * Nuclear tools - nuclear wire line logging instruments * Personal computers * Desktop computers Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle-the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy-or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems. Tasks? Nuclear engineers research, design and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They develop, monitor, and operate nuclear plants used to generate power. They may work on the nuclear fuel cycle - the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy -- or on the production of fusion energy. Some specialize in the development of nuclear power sources for spacecraft; others find industrial and medical uses for radioactive materials, such as equipment to diagnose and treat medical problems. Workplace? Nuclear engineers held about 16,000 jobs in the US 2002. Almost half were employed in utilities, one-quarter in professional, scientific, and technical services firms, and 14 percent in the federal government. Many federally employed nuclear engineers were civilian employees of the U.S. Navy, and others worked for the U.S. Department of Energy or the Nuclear Regulatory Commission. Team work and cooperation? Almost all jobs in engineering require some sort of interaction with coworkers. Whether they are working in a team situation, or just asking for advice, most engineers have to have the ability to communicate and work with other people. Engineers should be creative, inquisitive, analytical, and detail-oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering. Writing and presentation skills are also vital so engineers can share their research and experiences with colleagues through topical meetings, professional associations, and various publications. If you want to be a nuclear engineer know you know what you are going to do. Thank you.


Related questions

What is Average salary chief engineer on ocean ship?

it depends upon the what kind of ships they work.. for chemical tanker the salary of a chief engineer is around 12000 $(USD)


What is the average salary chief engineer on Norway offshore vessels?

77 000 NOK per month and minus tax


What is the highest salary a marine engineer can get?

a chief engineer earns about RS-8,00,000 per month, captain may get even higher pay.....


What is the average salary for a fire chief in North Carolina?

The average salary for a Fire Chief in the state of North Carolina is $45,000. The exact salary will depend upon the municipality they work for and their experience/tenure.


How much money does a railroad chief mechanical officer make?

The average annual salary for a rail chief mechanical officer working full time is $63,000. A locomotive engineer makes between $74,900 and $93,500 per year.


What is the average salary of a chief fire officer in south Africa?

$45, 000


Who was the chief engineer of the Brooklyn Bridge?

John A. Roebling was the chief engineer.


Who was the chief engineer of the Titanic?

Type your answer here... the chief engineer of the titanic was thomas miller


Who do they call thhe chief engineer in mrs frisby?

Nicodemus said Arthur was the chief engineer if they had such titles.


Who was the chief engineer of the transcontinental railroad?

Theodore Judah was the first chief engineer of what became the transcontinental railroad.


Can a electronics and communication engineer get job in merchant navy as a chief engineer?

You can't join as a chief engineer, you'll have to do a cadetship to earn the rank of 3rd Engineer then will have to get the sea time (36 months) to become Chief engineer (usually takes 8 years total).


You are a technician from some company and you want to confirm with you chief engineer about ordering of a few machines?

You should obviously talk to your chief engineer.