HEAT
heat
Sensible heat and latent heat are different in how they affect temperature changes in a substance. Sensible heat directly raises or lowers the temperature of a substance when added or removed, while latent heat causes a substance to change its state (such as melting or evaporating) without changing its temperature.
Latent heat is the energy required to change the state of a substance without changing its temperature, while specific heat is the amount of energy needed to change the temperature of a substance by one degree Celsius. Latent heat affects phase changes (like melting or boiling) while specific heat affects temperature changes. Both play a role in determining how quickly a substance's temperature changes when heat is added or removed.
Usually the volume changes - only a small amount for a solid or liquid, quite a lot for a gas. For an "ideal gas", the volume doubles when the temperature (absolute temperature, expressed in kelvin) doubles.
When thermal energy is added to a substance, the particles gain kinetic energy and move faster, increasing the substance's temperature. When thermal energy is removed, the particles lose kinetic energy and slow down, causing the temperature to decrease.
mealting point
When energy is added to a substance, the temperature of the substance increases, causing the particles to gain kinetic energy and move faster, resulting in a phase change. Likewise, when energy is removed from a substance, the temperature decreases, causing the particles to slow down and the substance to change phases. The energy absorbed or released during these phase changes is used to either break or form bonds between the particles.
The object's temperature changes when heat is either added to or removed from it. When heat is added, the object's temperature increases as its molecules gain more energy and move faster. When heat is removed, the object's temperature decreases as its molecules lose energy and slow down.
Sensible heat is the term used to describe heat that is added or removed from a substance without changing its state. It relates to the temperature of the substance and can be measured using a thermometer.
When heat is added to a substance, the thermal energy increases the kinetic energy of the particles in the substance, causing them to move faster. When heat is removed, the thermal energy decreases, and particles slow down. Therefore, the thermal energy is transferred to or from the particles in the substance, changing their motion and temperature.
When heat is added to or removed from a substance and the temperature remains the same, the thermal energy is being used to cause a phase change within the substance. This means that the added heat is causing the particles within the substance to change their arrangement or state of matter, rather than increasing their kinetic energy and raising the temperature.
When matter changes state, the molecular energy generally increases as heat is added or decreases as heat is removed. Molecular motion increases as the substance transitions from a solid to a liquid to a gas. The overall mass of the substance remains the same throughout the phase change process, as no particles are added or removed.