2K+ + OH- + 2H+ + SO42- 2H2O(l) + 2K+ + SO4 2-
OH- 2H+ -> 2H2O(I) ywwww :)
To write the complete ionic equation for the reaction between potassium hydroxide (KOH) and sulfuric acid (H₂SO₄), we first recognize that KOH dissociates into K⁺ and OH⁻ ions, while H₂SO₄ dissociates into 2 H⁺ and SO₄²⁻ ions. The complete ionic equation is: 2 K⁺(aq) + 2 OH⁻(aq) + 2 H⁺(aq) + SO₄²⁻(aq) → 2 H₂O(l) + K₂SO₄(aq). This shows the ions involved in the reaction and the products formed.
To balance the skeleton equation ( \text{Al}_2(\text{SO}_4)_3(aq) + \text{KOH}(aq) \rightarrow \text{Al(OH)}_3(aq) + \text{K}_2\text{SO}_4(aq) ), the coefficients needed are 2 for KOH, 1 for ( \text{Al}_2(\text{SO}_4)_3 ), 2 for ( \text{Al(OH)}_3 ), and 3 for ( \text{K}_2\text{SO}_4 ). Thus, the balanced equation is: [ 1 \text{Al}_2(\text{SO}_4)_3 + 6 \text{KOH} \rightarrow 2 \text{Al(OH)}_3 + 3 \text{K}_2\text{SO}_4 ].