answersLogoWhite

0

a series of star cycles

User Avatar

Wiki User

8y ago

What else can I help you with?

Related Questions

What heavier elements in the universe were formed by what?

They were formed in supernovae.


The heavier elements in the universe were formed by .?

They were formed in supernovae.


What are the heavier elements in this universe formed by?

Heavier elements in the universe are primarily formed through nuclear fusion processes within the cores of stars. Elements beyond iron are typically formed in supernova explosions, where the extreme conditions allow for the synthesis of elements such as gold, silver, and uranium.


When The heavier elements in the universe where formed by?

The heavier elements in the universe were primarily formed through processes such as stellar nucleosynthesis and supernova explosions. In stars, nuclear fusion combines lighter elements like hydrogen and helium into heavier elements up to iron. Elements heavier than iron are typically formed during supernovae, where the intense energy and neutron capture processes create these elements. Additionally, some heavy elements may also form through the merging of neutron stars.


How are elements heavier than iron formed in the universe?

Elements heavier than iron are formed through processes like supernova explosions, where the intense heat and pressure create conditions for nuclear fusion to occur, leading to the synthesis of heavier elements. This process is known as nucleosynthesis and is crucial for the creation of elements like gold, uranium, and beyond in the universe.


What is a hypothesis to explain the presence of iron and other heavier elements than iron?

Chemical elements are formed in the Universe by stellar nucleosynthesis.


How are elements heavier than iron are formed?

Elements heavier than iron are formed in super-nova explosions.


How are elements formed from hydrogen?

Heavier elements are formed from hydrogen, the most abundant element in the universe, through a process called nuclear fusion. There are machines or structures in the universe that do this, and we call them stars. It is the process within stars, stellar nucleosynthesis, that allows heavier elements to be created up through iron. Elements heavier than iron are formed in supernova events. Use the links below to learn more.


What is the early history of the universe from the viewpoint of a physicist from the birth of elementary particles to the emergence of chemical elements?

Once the Universe got cold enough, atoms could form. It is believed that in the Big Bang, only hydrogen, helium, and small amounts of lithium formed; all heavier elements were formed later, through fusion in stars.Once the Universe got cold enough, atoms could form. It is believed that in the Big Bang, only hydrogen, helium, and small amounts of lithium formed; all heavier elements were formed later, through fusion in stars.Once the Universe got cold enough, atoms could form. It is believed that in the Big Bang, only hydrogen, helium, and small amounts of lithium formed; all heavier elements were formed later, through fusion in stars.Once the Universe got cold enough, atoms could form. It is believed that in the Big Bang, only hydrogen, helium, and small amounts of lithium formed; all heavier elements were formed later, through fusion in stars.


What are the heavier element in the universe formed by?

a series of stars


How are elements formed?

Hydrogen and helium were formed shortly after the creation of the universe (when the protons and alpha particles combined with electrons). Everything else was formed within the core of stars (by fusion reactions).


Where did most of the elements heavier than Hydrogen and Helium form in the Universe?

Elements heavier than hydrogen and helium primarily formed in the cores of stars through nuclear fusion processes. Elements up to iron are formed in the cores of stars, while elements heavier than iron are typically produced in supernova explosions or neutron star mergers. These heavy elements are dispersed into space during these catastrophic events, enriching the interstellar medium from which new stars and planets can form.