Copper's is lower because metals in general are more energy conductive than organic solvents.
The specific heat of ethanol is 2.44 J/gC. This means that ethanol can absorb and release heat energy efficiently, making it a good solvent for reactions and a useful fuel source. Its high specific heat also helps regulate temperature changes in systems where it is present.
The specific heat capacity of ethanol is 2.44 J/gC. This means that ethanol can absorb and release heat more efficiently compared to other substances, as it requires less energy to change its temperature. This property makes ethanol a good candidate for use in applications where heat transfer is important.
The specific heat capacity of copper sulfate varies with temperature. At room temperature, it is approximately 0.39 J/g°C.
The specific heat of copper(II) sulfate is approximately 0.39 J/g°C. This value represents the amount of heat required to raise the temperature of 1 gram of copper(II) sulfate by 1°C.
To calculate the heat energy required, you can use the formula: Q = mcΔT, where Q is the heat energy, m is the mass of the copper (0.365 kg), c is the specific heat capacity of copper (0.0920 J/g°C), and ΔT is the change in temperature (60.0°C - 23.0°C). First, convert the mass to grams and then plug the values into the formula to find the heat energy required.
The specific heat of ethanol is 2.44 J/gC. This means that ethanol can absorb and release heat energy efficiently, making it a good solvent for reactions and a useful fuel source. Its high specific heat also helps regulate temperature changes in systems where it is present.
The specific heat capacity of ethanol is 2.44 J/gC. This means that ethanol can absorb and release heat more efficiently compared to other substances, as it requires less energy to change its temperature. This property makes ethanol a good candidate for use in applications where heat transfer is important.
Specific heat of ethanol: 2.46 g/mol*degree CSpecific heat is the heat required to raise the temperature of a given mass by 1 degree Celsius.The formula is Q = cmΔTQ = Heat addedc = Specific heatm = MassΔT = Change in temperature
The specific heat of copper at standard temperature and pressure (STP) is approximately 0.385 J/g°C. This means that it requires 0.385 joules of energy to raise the temperature of 1 gram of copper by 1 degree Celsius at STP.
The specific heat capacity of copper sulfate varies with temperature. At room temperature, it is approximately 0.39 J/g°C.
The specific heat of copper(II) sulfate is approximately 0.39 J/g°C. This value represents the amount of heat required to raise the temperature of 1 gram of copper(II) sulfate by 1°C.
To calculate the heat energy required, you can use the formula: Q = mcΔT, where Q is the heat energy, m is the mass of the copper (0.365 kg), c is the specific heat capacity of copper (0.0920 J/g°C), and ΔT is the change in temperature (60.0°C - 23.0°C). First, convert the mass to grams and then plug the values into the formula to find the heat energy required.
Water has a greater specific heat capacity than copper. This means that water can absorb more heat energy before its temperature increases compared to copper. This property of water is why it is often used as a coolant in various applications.
The specific heat of copper is 0.093 cal/g(C°) or 390 J/kg(C°).
The specific heat capacity of copper is approximately 0.385 J/g°C. This means that it takes 0.385 joules of energy to raise the temperature of 1 gram of copper by 1 degree Celsius. Copper has a relatively high specific heat capacity compared to other metals.
The specific heat of water is 4184 J kg-1 K-1 The specific heat of copper 385 J kg-1 K-1. So the answer is no.
The heat of reaction for ethanol fermentation from glucose is exothermic, meaning it releases heat. This is because the process of fermentation involves breaking down glucose to produce ethanol and carbon dioxide, which releases energy in the form of heat.