Specific heat of ethanol: 2.46 g/mol*degree C
Specific heat is the heat required to raise the temperature of a given mass by 1 degree Celsius.
The formula is Q = cmΔT
Q = Heat added
c = Specific heat
m = Mass
ΔT = Change in temperature
The latent heat of vaporization of ethanol is approximately 38.6 kJ/mol at its boiling point of 78.37°C. This is the amount of energy required to transform a liquid into a gas at a constant temperature.
Latent heat is an important form of atmospheric energy. Latent heat is a property of water vapor in the atmosphere and when water vapor condenses it releases latent heat. Latent heat must be supplied to evaporate liquid water and this heat affects the behavior of the weather.
The heat of reaction for ethanol fermentation from glucose is exothermic, meaning it releases heat. This is because the process of fermentation involves breaking down glucose to produce ethanol and carbon dioxide, which releases energy in the form of heat.
1. Process that release "Latent Heat" : a. Freezing, b. Condensation, - (Greatest amount of released Latent Heat.) c. Deposition. 2. Process that absorbs "Latent Heat" : a. Melting, b. Evaporation, - (Greatest amount of absorbed Latent Heat.) c. sublimation.
Sensible heat and latent heat are different in how they affect temperature changes in a substance. Sensible heat directly raises or lowers the temperature of a substance when added or removed, while latent heat causes a substance to change its state (such as melting or evaporating) without changing its temperature.
The latent heat of vaporization of ethanol is approximately 38.6 kJ/mol at its boiling point of 78.37°C. This is the amount of energy required to transform a liquid into a gas at a constant temperature.
about 200 calories of heat must be added to 1 gram of ethanol to convert it from a liquid to a gas
The symbol for latent heat is ( L ).
Latent heat of evaporation of water to steam is 2270 KJ/Kg
Latent
The opposite of latent heat is sensible heat. Sensible heat is the heat that causes a change in temperature of a substance without a change in phase.
The energy which must be transferred to or from a sample of water in order to change it's state is called the Latent Energy or Latent Heat - for example Latent Heat of Evaporation or Latent Heat of Freezing.
Latent heat is an important form of atmospheric energy. Latent heat is a property of water vapor in the atmosphere and when water vapor condenses it releases latent heat. Latent heat must be supplied to evaporate liquid water and this heat affects the behavior of the weather.
Latent heat is the heat required to achieve a change of phase - for example, to melt ice and convert it to water. As to the relationship with potential energy, latent heat IS a type of potential energy.
latent heat of vapourisation is the heat energy required to change 1 kg of a liquid to gas at atmospheric pressure at its boiling point where latent heat of fusion is the amount of heat energy required to change 1 kg of solid to liquid at its melting point so that is why latent heat of vapourisation higher than latent heat of fusion.
The latent heat of vaporisation of water requires more energy. This is because on melting, the intermolecular bonds in water are only weakened whereas on boiling, the bonds are completely broken, which requires a larger amount of energy.
No, latent heat cannot be zero because it represents the heat energy absorbed or released during a phase change of a substance, such as melting, freezing, evaporation, or condensation. This energy is required to break intermolecular bonds or create them, so it cannot be zero.