answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What is the length of the carbon wire if a 200 m long aluminum wire has the same resistance and cross sectional area as the carbon wire?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

Does resistance increase as the cross-sectional area of the wire?

the resistance can never increase or decrease....... (you can't open the resistor and take out the something and make the resistance increase or decrease)AnswerSince resistance is directly proportional to the length of a conductor, increasing the length of a wire will increase its resistance. For example, if you double its length, you will double its resistance.


What affects resistance in a circuit?

1.Resistance is dependent on the material.Like wood is insulator(ALMOST infinite resistance). 2.Resistance of a wire having more cross sectional area is less and less cross sectional area is more(i.e. it is inversely propotional to the cross sectional area.) 3.It is more for more length and less for less length. 4. Resistance varies with temprature.For metals like platinum it increses with temprature.


What factors effect the resistance of a conductor?

Factors affecting the resistance of a conductor include the material from which it is made, its length, its cross-sectional area, and its temperature.


What will happen to the resistance of a wire if it is stretched to increase its length by 4 times?

Assume that the increase in length is achieved by uniform reduction in the cross-sectional area of the wire. Then an increase in length by 4 times will result in the cross sectional area being reduced to a fifth of it original value. This will increase the resistance to five times its previous value.


Three factors that affect the resistance of a copper wire -?

There are three main factors that affect the resistance of a copper wire: Length of the wire: The resistance of a wire is directly proportional to its length. As the length of the wire increases, the resistance also increases. This is because the longer the wire, the more obstacles (collisions with electrons) the current has to overcome, resulting in higher resistance. Cross-sectional area of the wire: The resistance of a wire is inversely proportional to its cross-sectional area. As the cross-sectional area of the wire increases, the resistance decreases. This is because a larger cross-sectional area provides more space for the flow of electrons, reducing the resistance. Resistivity of the material: The resistance of a wire is also dependent on the resistivity of the material it is made of. Resistivity is an inherent property of the material and is a measure of how much the material opposes the flow of electric current. Copper has a relatively low resistivity compared to other metals, making it a good conductor and suitable for wiring applications. The relationship between these factors and the resistance of a copper wire can be expressed by the formula: R = ρ × (L / A) Where: R is the resistance of the wire ρ (rho) is the resistivity of the material (in this case, copper) L is the length of the wire A is the cross-sectional area of the wire By adjusting these three factors, you can control and manipulate the resistance of a copper wire to suit your specific needs in electrical and electronic applications.

Related questions

Does resistance increase as the cross-sectional area of the wire?

the resistance can never increase or decrease....... (you can't open the resistor and take out the something and make the resistance increase or decrease)AnswerSince resistance is directly proportional to the length of a conductor, increasing the length of a wire will increase its resistance. For example, if you double its length, you will double its resistance.


What is the Change in resistance of wire when its length is double?

Assuming the wire follows Ohm's Law, the resistance of a wire is directly proportional to its length therefore doubling the length will double the resistance of the wire. However when the length of the wire is doubled, its cross-sectional area is halved. ( I'm assuming the volume of the wire remains constant and of course that the wire is a cylinder.) As resistance is inversely proportional to the cross-sectional area, halving the area leads to doubling the resistance. The combined effect of doubling the length and halving the cross-sectional area is that the original resistance of the wire has been quadrupled.


What are the factors affecting the resistance of conductors?

Conductor resistance = Conductor resistivity * Length of conductor / Cross sectional area of conductor. So. It is directly proportional to material & conductor length. And inversely proportional to the cross sectional area of conductor.


What affects resistance in a circuit?

1.Resistance is dependent on the material.Like wood is insulator(ALMOST infinite resistance). 2.Resistance of a wire having more cross sectional area is less and less cross sectional area is more(i.e. it is inversely propotional to the cross sectional area.) 3.It is more for more length and less for less length. 4. Resistance varies with temprature.For metals like platinum it increses with temprature.


The resistance of a wire depends on the?

The length, cross-sectional area, and resistivity. As resistivity changes with temperature, temperature indirectly affects resistance.


The magnitude of the resistance of a wire depends on?

Temperature, Length of wire, Area of the cross-section of wire and nature of the material.


When the length and area of cross-section both are doubled then its resistance?

The answer depends on whether the cross sectional radius/diameter are doubles or the cross sectional area is doubled.


When the length and area of cross section both are doubled then its resistance?

The answer depends on whether the cross sectional radius/diameter are doubles or the cross sectional area is doubled.


What factors effect the resistance of a conductor?

Factors affecting the resistance of a conductor include the material from which it is made, its length, its cross-sectional area, and its temperature.


What is formula of resistivity?

R is the electrical resistance,A is the cross-sectional area,l is the length of the piece of material.


What three primary factors influence electrical resistance of circuit?

The resistance of any material is affected by its length, cross-sectional area, and resistivity. As resistivity varies with temperature, resistance is indirectly affected by temperature.Specifically, resistance is directly proportional to length and inversely proportional to cross-sectional area, and resistivity is the constant of proportionality.These factors apply to the conductors and all the components of your 'circuit' -including any insulation.


What is the resistance value?

Electrical resistance is measure in Ohms. A function of voltage divided by current. It is also dependant on the length and cross sectional area of the conductor.