answersLogoWhite

0

Galileo filled in idle moments in church, by observing the period of the various chandeliers, and estimating their length. From this he deduced the formula linking the length of the string, and the period of the bob.

You could do worse than replicating his experiments.

And of special interest is the Foucault Pendulum, a good example of which is on display in the Smithsonian in Washington. And no doubt in other places as well.

Whilst Galileo may have had a timepiece, he could have used the regularity of his pulse as a timer.

User Avatar

Wiki User

11y ago

What else can I help you with?

Related Questions

What is the relationship between the length of a pendulum and its angular acceleration?

The relationship between the length of a pendulum and its angular acceleration is that a longer pendulum will have a smaller angular acceleration, while a shorter pendulum will have a larger angular acceleration. This is because the length of the pendulum affects the time it takes for the pendulum to swing back and forth, which in turn affects its angular acceleration.


What is the relationship between the length of the string of a pendulum and the number of swings?

There's no relationship between the length of the pendulum and the number of swings.However, a shorter pendulum has a shorter period, i.e. the swings come more often.So a short pendulum has more swings than a long pendulum has in the same amountof time.


What is the relationship between the period of a pendulum and the pendulum length?

The period of a pendulum is directly proportional to the square root of its length. This means that as the pendulum length increases, the period also increases. This relationship is described by the formula T = 2π √(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


Relationship between period and length of a pendulum?

T=1/2l


What is an example of the hypothesis for pendulum?

An example of a hypothesis for a pendulum experiment could be: "If the length of the pendulum is increased, then the period of its swing will also increase." This hypothesis suggests a cause-and-effect relationship between the length of the pendulum and its swinging motion.


What is the relationship between the period of a pendulum and its length?

For small angles, the formula for a pendulum's period (T) can be approximated by the formula:T = 2 * pi * sqrt(L/g), where L is the length of the pendulum length, and g is acceleration due to gravity. See related link for Simple Pendulum.


What is the relationship between mass and period in the context of physics?

In physics, the relationship between mass and period is described by the formula for the period of a pendulum, which is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. The mass of the pendulum does not directly affect the period of the pendulum, as long as the length and amplitude of the swing remain constant.


What happens to the period o a pendulum when its length is increased?

If the length of a pendulum is increased, the period of the pendulum also increases. This relationship is described by the equation for the period of a pendulum, which is directly proportional to the square root of the length of the pendulum. This means that as the length increases, the period also increases.


What are the hypothesis from pendulum experiment?

In a pendulum experiment, the main hypotheses usually involve testing the relationship between the length of the pendulum and its period of oscillation, or how the amplitude of the swing affects the period. For example, a hypothesis could be that increasing the length of the pendulum will result in a longer period of oscillation.


What is the relationship between the length of a pendulum and the number of times it swings?

1/v = 2pi sqrt(l/g)


How does the length affect pendulum in a period?

The period of a pendulum is independent of its length. The period is determined by the acceleration due to gravity and the length of the pendulum does not affect this relationship. However, the period of a pendulum may change if the amplitude of the swing is very wide.


What is the relationship between the amplitude of a pendulum and its period of oscillation?

The amplitude of a pendulum does not affect its period of oscillation. The period of oscillation is determined by the length of the pendulum and the acceleration due to gravity. The amplitude only affects the maximum angle the pendulum swings from its resting position.