# What is the need of conversion from time to frequency domain?

Design of filtering and control systems is usually easier in the frequency domain than in the time domain.

### What is the need for convolution in digital signal processing?

If we need to add two signals in time domain, we perform convolution. A better way, is to convert the two signals from time domain to frequency domain. This can be achieved by FAST FOURIER TRANFORM. Once both the signals have been converted to frequency domain, they can simply be multiplied. Since Convolution in time domain is similar to multiplying in Frequency domain. Once both the signals have been multiplied, they can be converted back…

### What are advantages you have of frequency domain analysis over time analysis?

Frequency Analysis is much easier. Some equations can't be solved in time domain while they can be solved easily in frequency domain. When moving to frequency domain you change the differential equation into algebric equation. Also, in frequency domain it is easy to apply filters and compute their specifications. In telecommunications, using multiple frequencies enables more than one user to use the service at the same time if having different frequency, this enables less delay…

### What is the real time application for fourier series in signals?

Fourier series analysis is useful in signal processing as, by conversion from one domain to the other, you can apply filters to a signal using software, instead of hardware. As an example, you can build a low pass filter by converting to frequency domain, chopping off the high frequency components, and then back converting to time domain. The sky is the limit in terms of what you can do with fourier series analysis.

### What happen when fourier series is taken over asignal?

You use the fourier series to convert a signal from the time domain into the frequency domain, and vice versa. This is done by computing the sine waves that would be required to create the original signal. When done, you get a spectrogram, showing the intensity of each frequency (frequency domain) rather than the signal level over time (time domain).