[Ne] = [He]2s22p6
The noble gas electron configuration of strontium fluoride is [Kr] 5s^2. This means that the electron configuration of strontium fluoride is obtained by adding electrons to the electron configuration of krypton until reaching the total number of electrons in strontium fluoride.
Neon has the same electron configuration as the Fluoride ion however a spectrum of these although the same will be shifted in wave-length due to the additional charge on the Neon atoms nucelus.
The noble gas electron configuration of sodium fluoride is [Ne]3s^1 3p^5. This means that it has the same electron configuration as neon, with an additional 3s^1 electron from sodium and a 3p^5 electron from fluorine.
1s2 2s2 2p6 is the electron configuration of the fluoride ion. It has a complete octet and is isoelectronic with neon. Before it becomes an ion, it is 1s2 2s2 2p5 Then it gains an electron and has a negative charge.
The noble gas electron configuration of radon is [Xe]4f145d106s26p6.
The "Noble gas electron configuration," or the condensed electron configuration, for F is [He] 2s2 3p5.
The noble gas configuration of oxygen (O) is [He] 2s^2 2p^4, where [He] represents the electron configuration of the nearest noble gas, helium.
Only group 18 elements have noble gas configuration. All other elements lack a noble gas electronic configuration.
No, chlorine (Cl) does not have a noble gas electronic configuration. It has the electron configuration [Ne]3s^2 3p^5, which is one electron away from achieving a stable, noble gas configuration like argon (Ar).
The electronic configuration of Ga is 1s22s22p63s23p64s23104p1 Expressed as a noble gas configuration this is [Ar] 4s2, 3d10, 4p1
Full form: 1s1. it doesn't have noble gas configuration as there is no noble gas before hydrogen
Co is cobalt and is not a noble gas. Cobalt is a transition metal. Its electron configuration is [Ar]3d74s2.