Because it is. Capacitive reactance is a form of resistance, along with inductive reactance. All are measured in ohms.
Inductive reactance, as well as capacitive reactance, is measured in ohms.
Inductive reactance, as well as capacitive reactance, is measured in ohms.
Yes. Inductive and capacitive reactance is measured in ohms, and it is entirely possible for reactance to be greater than 1,000, or even 1,000,000, ohms. It all depends on frequency.
Inductive reactance does NOT have it own sign or symbol. Rather, it uses Ohms as a quantifier. But Capacitive reactance ALSO uses Ohms as a quantifier. Fortunately, 1 Ohm of Inductive reactance is cancelled by 1 Ohm of Capacitive reactance at the same frequency of measurement.
Inductive reactance does NOT have it own sign or symbol. Rather, it uses Ohms as a quantifier. But Capacitive reactance ALSO uses Ohms as a quantifier. Fortunately, 1 Ohm of Inductive reactance is cancelled by 1 Ohm of Capacitive reactance at the same frequency of measurement.
The capacitive reactance of a 1 µF capacitor at a frequency of 60 Hz is about 2700 ohms.
The unit of measurement for inductive reactance (XL) is the ohm.
The two factors that determine the capacitive reactance of a capacitor are the frequency of the alternating current passing through the capacitor and the capacitance value of the capacitor. Capacitive reactance (Xc) is inversely proportional to the frequency (f) and directly proportional to the capacitance (C), as calculated using the formula Xc = 1 / (2πfC).
Reactance is -1/2 pi F C so a 25 uF capacitor at 400 Hz would have a reactance of about -15.9 ohms. The negative sign indicates that capacitive reactance is leading, with current leading voltage.AnswerI would take issue with the previous answer that capacitive reactance is expressed as a negative value, or that it is 'leading'. Reactance is not a vector quantity, so it neither leads nor lags anything. In a (theoretically) purely capacitive circuit, it is the load current that leads the supply voltage. However, when using complex notation, capacitive reactance is expressed as -j 15.9 ohms, where 'j' is called an 'operator' -but even this does not mean that the reactance is 'leading', as it defines reactance in terms of a current phasor -in other words, the '-j' refers to the relative position of current to voltage, not reactance to impedance.
Assuming you are talking about an AC circuit, then the total opposition to the flow of current in an R-C circuit is called its impedance (symbol: Z), measured in ohms. This is the vector sum of the circuit's resistance (R) and its capacitive reactance (XC) -each also measured in ohms.
Resistance is constant no matter the frequency applied. Reactance varies depending on the frequency of the power applied to it.
Capacitance is a physical characteristic of a pair of conductors, dependent upon the distance between them, the opposing cross-sectional areas of those conductors, and the nature of the dielectric between them, and is measured in farads.Capacitive reactance is the opposition to the flow of current of a circuit, determined by that circuit's capacitance and the frequency of the a.c. supply applied to that circuit, and is measured in ohms.