Relativity is a theory of gravity, and gravity governs the motion of planets. This is your answer in a nutshell. If you want a detailed answer, then I suggest you start studying general theory.
General relativity is a theory of gravity that describes how massive objects like planets and stars curve spacetime, while special relativity deals with the relationship between space and time for objects moving at constant speeds.
General relativity is a theory of gravity that describes how massive objects like planets and stars curve spacetime, while special relativity deals with the relationship between space and time for objects moving at constant speeds. In general relativity, gravity is seen as a curvature of spacetime caused by mass, while special relativity focuses on the effects of motion on space and time.
General relativity and special relativity are both theories proposed by Albert Einstein to explain the behavior of objects in space and time. Special relativity deals with the relationship between space and time in the absence of gravity, while general relativity extends this to include the effects of gravity on the curvature of spacetime. In essence, special relativity focuses on objects moving at constant speeds, while general relativity considers the effects of gravity on the motion of objects.
General relativity and special relativity are both theories developed by Albert Einstein to explain the nature of space, time, and gravity. The key difference between the two is that special relativity deals with the behavior of objects in uniform motion, while general relativity extends this to include the effects of gravity on objects in motion. Special relativity is based on the principle of the constancy of the speed of light in a vacuum, while general relativity introduces the concept of curved spacetime to explain the force of gravity.
Special relativity deals with the physics of objects moving at constant speeds, while general relativity includes the effects of gravity and acceleration on objects in motion.
The force of gravity between the planets and the sun is what keeps the planets in their orbits. Gravity pulls the planets towards the sun, but their forward velocity keeps them moving in a circular or elliptical path around it. This balance between gravity and velocity enables the planets to stay in their orbits around the sun.
Newtonian gravity is based on the concept of a force acting between two objects based on their masses and distance, while Einstein's theory of gravity, known as general relativity, describes gravity as the curvature of spacetime caused by mass and energy. In general relativity, gravity is not a force but rather a result of the geometry of spacetime.
The force that holds planets in their orbit is called gravity. Gravity is the force of attraction between objects with mass, which keeps planets in their elliptical paths around the Sun.
General relativity and Newtonian gravity differ in their explanations of the behavior of massive objects in the universe primarily in terms of the concept of space-time. Newtonian gravity describes gravity as a force acting between two objects, while general relativity views gravity as the curvature of space-time caused by the presence of mass. This leads to differences in predictions, such as the bending of light around massive objects and the existence of black holes, which are better explained by general relativity.
Planets are held in orbit around a star by gravity. Gravity is the force of attraction between objects with mass, and it is what keeps planets in their respective orbits around stars like our Sun. Without gravity, planets would not be able to maintain their position in space.
Isaac Newton concluded that the force of gravity and the forward motion of the planets combined to keep them in orbit around the Sun. The force of gravity pulls the planets towards the Sun, while the forward motion of the planets creates the centrifugal force that counteracts gravity, leading to stable orbits.
Planets orbit the sun in a counter clockwise motion, due to the balance between the Sun's gravity and the gravity of each individual planet.