both are particle ionizing radiation that comes as a result of nuclear transformation.
The two types of radioactive decay are alpha and beta. Generally, in alpha decay the nucleus will lose 2 protons and 2 neutrons (it's a helium nucleus). Beta decay involves a neutron losing an electron and becoming a proton, so the atomic mass remains the same, but the atomic number increases by one since there is another proton.
That depends on the nuclear decay type. For gamma decay, the identity does NOT change, but for alpha and beta, it does.
False.
Alpha decay decreases the atomic number by two. Beta- decay increases the atomic number by one. Beta+ decay decreases the atomic number by one. Gamma decay does not change the atomic number. However, gamma decay is often incidental to a precipitating alpha or beta event that upsets the energy equilibrium in the nucleus, so the two are not unrelated.
There is a difference between beta emitters and beta particles. In situations where an atomic nucleus exhibits nuclear instability due to too many neutrons for the number of protons or vice versa, that nucleus may undergo beta decay. It the decay event occurs, that atom is considered a beta emitter. The emitted particle is the beta particle. That's the difference. (There are two different beta particles, so check the articles on beta decay to get the scoop.)
No. In both the cases the element would definitely change. As alpha particle comes out then the new element would have two less in atomic number where as in beta particle decay the new element will have one higher in atomic number.
Alpha and beta particles are the same in that changes in unstable atomic nuclei can release alpha particles or can beta particles (depending on the isotope involved), and both are forms of particulate radiation.
No. Decay is the process, radiation is the product.
No, alpha, beta, and gamma rays are not all produced by the same element. Alpha particles consist of two protons and two neutrons and are emitted during radioactive decay of heavy elements like uranium. Beta particles are electrons or positrons emitted during the decay of certain isotopes. Gamma rays are high-energy photons emitted during the transition of a nucleus to a lower energy state and are not particles.
It depends on whether the beta decay is beta- or beta+. The alpha emission reduces the atomic number by 2. Beta- increases the atomic number by 1 while beta+ decreases the atomic number by 1. You do the math.
Alpha decay. Alpha particles are the same as a helium-4 nucleus.
It's beta decay. Actually, it's beta minus decay. A neutron in the nucleus of thorium-234 undergoes beta minus decay and changes into a proton with the subsequent release of an electron, an antineutrino and some energy. The transformation of a neutron in the thorium nucleus into that proton creates another element. You'll recall that the identity of an element is determined solely by the number of protons in its nucleus. And our thorium atom has now become a protractinium-234 atom. Links are provided below for more information.